首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
厌氧真菌是自然界中降解植物纤维素类物质最高效的微生物之一.近年来,大量厌氧真菌和甲烷菌共培养菌株被分离.共培养中,甲烷菌通过对厌氧真菌代谢产物的利用显著提高厌氧真菌对木质纤维素的降解;厌氧真菌通过为甲烷菌提供能量和营养物质使甲烷菌快速生成大量甲烷.全面深入地了解共培养中两者的互作关系以及共培养降解木质纤维素产甲烷的特性...  相似文献   

2.
Fermentation of woods by rumen anaerobic fungi   总被引:4,自引:0,他引:4  
Abstract The potential of rumen anaerobic fungi for fermenting untreated woods has been assessed using two Neocallimastix species isolated from sheep. When a strain of N. frontalis was incubated for 11 days with wood from 12 hardwood (angiosperm) species, many woods were measurably fermented, with wood from Populus tremuloides (32%) and Fagus sylvatica (21%) being the most highly degraded. This N. frontalis solubilised celulose, hemicellulose and lignin in P. tremuloides wood. Lower degradation (17%) of P. tremuloides wood by a different species of Neocallimastix showed that the choice of fungus as well as the structure and chemistry of the wood influenced the amount of wood cell wall degraded by anaerobic fungi. The amount of degradation was not related to the length of fungal rhizoids.  相似文献   

3.
Three rumen anaerobic fungi—Neocallinastix frontalis MCH3,Piromyces (Piromonas) communis FL, andCaecomyces (Sphaeromonas) communis FG10—were cultured on cellulose filter paper alone or in association with one of two rumen cellulolytic bacteria,Ruminococcus flavefaciens 007 andFibrobacter succinogenes S85. Cocultures ofN. frontalis orP. communis andR. flavefaciens were markedly less effective than the fungal monocultures in degrading cellulose but more effective than the bacterial monocultures.R. flavefaciens had an antagonistic effect against both of the fungal species. In contrast, no interaction was observed between the two fungal species andF. succinogenes. Cellulose was more effectively degraded by the cocultureC. communis-R. flavefaciens than by the corresponding fungal and bacterial monocultures. The effectiveness of degradation of the cocultureC. communis-F. succinogenes was comparable to that of the bacterial strains but greater than that of the fungi; no interaction was observed between these two microorganisms.  相似文献   

4.
The fibrolytic activities of rumen fungi were studied in terms of dry matter loss, plant cell wall degradation and enzyme (cellulase and xylanase) activities, when grown in vitro on either untreated or sodium hydroxide treated stems of barley straw over a 12 day period. Changes in fungal growth, development and overall biomass were followed using chitin assay and scanning electron microscopy. Treatment with sodium hydroxide resulted in a decrease in the NDF content together with the disruption of cuticle and the loosening and separation of the plant cells within the straw fragments. The enzyme activities of the anaerobic fungi have a high positive correlation (R(2)=0.99) with their biomass concentration assessed by chitin assay indicating that chitin is a valuable index for the estimation of the fungal biomass in vitro. The anaerobic fungi produced very extensive rhizoidal systems in these in vitro cultures. After incubation with rumen fungi, dry matter losses were, respectively, 35% and 38% for the untreated and treated straw samples and the overall fungal biomass, determined by chitin assay, was significantly higher in the treated samples. In vitro degradation of cellulose and hemicellulose was also higher in the treated than that of untreated cultures. Although, comparatively, xylanase activity was higher than that of cellulase, the cellulose fraction of the straw was degraded more than hemicellulose in both treated and untreated straw.  相似文献   

5.
对分离自山羊瘤胃的真菌分离培养液中甲烷菌进行16SrDNA扩增、DGGE分析、RFLP及测序分析,研究共存于真菌分离培养液中甲烷菌的种类及其多样性。DGGE结果显示:从厌氧真菌分离至第45代,甲烷菌多样性指数由1·32降至0·99,相似性最低为34·7%;第45代至62代,多样性指数由0·99升至1·15,相似性最低为89·2%。RFLP多态性分析69个克隆共得到5个操作分类单元,选择其中6个具有代表性的序列进行测序。序列及系统进化分析表明,属于其中3个操作分类单元的克隆最相似菌都是UnculturedarchaealsymbiontPA202,相似性均为95%,没有与这些克隆相似性较高的已培养甲烷菌;属于另外2个操作分类单元的克隆最相似菌都是Unculturedrumenmethanogen956,相似性均为97%,最相似已知菌为Methanobrevibactersp.NT7,相似性为97%。结果表明,真菌培养液中存在目前尚未分离培养的瘤胃甲烷菌。  相似文献   

6.
The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi   总被引:3,自引:0,他引:3  
J. KOPEČNÝ, B. HODROVÁ AND C. S. STEWART. 1996. The polycentric anaerobic fungus Orpinomyces joyonii A4 was cultivated on microcrystalline cellulose alone and in association with the rumen chitinolytic bacterium Clostridium sp. strain ChK5, which shows strong phenotypic similarity to Clostridium tertium . The presence of strain ChK5 significantly depressed the solubilization of microcrystalline cellulose, the production of short-chain fatty acids (SCFA) and the release of endoglucanase by the fungus. Co-culture of the monocentric anaerobic fungus Neocallimastix frontalis strain RE1, Neocallimastix sp. strain G-1 and Caecomyces sp. strain SC2 with strain ChK5 also resulted in depressed fungal cellulolysis. Cell-free supernatant fluids from strain ChK5 inhibited the release of reducing sugars from carboxymethylcellulose by cell-free supernatant fluids from O. joyonii strain A4. Strain 007 of the cellulolytic anaerobe Ruminococcus flavefaciens was also shown to produce small amounts of soluble products upon incubation with colloidal chitin. Mixtures of culture supernates from this bacterium and from O. joyonii strain A4 showed cellulase activity that was less than that of the component cultures. It is suggested that the ability of some rumen bacteria to hydrolyse or transform chitin may be an important factor in the interactions between bacteria and fungi in the rumen.  相似文献   

7.
The attachment of 14C-choline-labelled mixed rumen protozoa to barley straw in vitro was not significantly affected when bacteria prepared from rumen fluid were added to the incubation mixture. There was similarly little effect on protozoal attachment when the straw had already been colonized by a bacterial population for 24 h. In contrast, it was deduced from measurements of enzyme activities associated with straw that bacterial attachment was reduced if protozoa were present. Bacteria that had colonized the straw for 25 h beforehand were less susceptible to predation by protozoa.  相似文献   

8.
Three different ruminal fungi, a Neocallimastix sp. (strain LM-1), a Piromonas sp. (strain SM-1), and a Sphaeromonas sp. (strain NM-1), were grown anaerobically in liquid media which contained a suspension of either 1% (wt/vol) purified cellulose or finely milled wheat straw as the source of fermentable carbon. Fungal biomass was estimated by using cell wall chitin or cellular protein in cellulose cultures and chitin in straw cultures. Both strains LM-1 and SM-1 degraded cellulose with a concomitant increase in fungal biomass. Maximum growth of both fungi occurred after incubation for 4 days, and the final yield of protein was the same for both fungi. Cellulose degradation continued after growth ceased. Strain NM-1 failed to grow in the cellulose medium. All three anaerobic fungi grew in the straw-containing medium, and loss of dry weight from the cultures indicated degradation of straw to various degrees (LM-1 greater than SM-1 greater than NM-1). The total fiber component and the cellulose component of the straw were degraded in similar proportions, but the lignin component remained undegraded by any of the fungi. Maximum growth yield on straw occurred after 4 days for strain LM-1 and after 5 days for strains SM-1 and NM-1. The calculated yield of cellular protein for strain LM-1 was twice that of both strains SM-1 and NM-1. The cellular protein yield of strain SM-1 was the same in both cellulose and straw cultures. In contrast to cellulose, straw degradation ceased after the end of the growth phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
AIMS: To investigate biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria, and to identify the fungus with the fastest biohydrogenation rate. METHODS AND RESULTS: Biohydrogenation of linoleic acid by mixed rumen fungi and mixed rumen bacteria were compared in vitro. With mixed rumen bacteria, all biohydrogenation reactions were finished within 100 min of incubation and the end product of biohydrogenation was stearic acid. With mixed rumen fungi, biohydrogenation proceeded more slowly over a 24-h period. Conjugated linoleic acid (CLA; cis-9, trans-11 C18 : 2) was an intermediate product, and vaccenic acid (VA; trans-11 C18 : 1) was the end product of biohydrogenation. Fourteen pure fungal isolates were tested for biohydrogenation rate. DNA sequencing showed that the isolate with the fastest rate belonged to the Orpinomyces genus. CONCLUSIONS: It is concluded that rumen fungi have the ability to biohydrogenate linoleic acid, but biohydrogenation is slower in rumen fungi than in rumen bacteria. The end product of fungal biohydrogenation is VA, as for group A rumen bacteria. Orpinomyces is the most active biohydrogenating fungus. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate that rumen fungi can biohydrogenate fatty acids. Fungi could influence CLA content of ruminant products.  相似文献   

10.
The degradation of cell walls of mesophyll, epidermis and fibre cells isolated from leaves of perennial and Italian ryegrass within the sheep rumen or by selected strains of rumen bacteria in vitro , was followed by estimation of dry matter loss, or loss of neutral sugar residues. Primary cell walls (mesophyll and epidermis) were fully degraded within 12 h in the rumen, while the more heavily lignified fibre cell walls showed only a 40% loss of dry matter over the same period. Neutral sugar residues were lost at a common rate from walls of all three cell types. Incubation of cell walls with cellulolytic bacteria showed that the extent to which cell walls were attacked was constantly ordered (epidermis > mesophyll > fibre). The rate of degradation of cell walls was less in axenic culture than within the rumen. Greatest weight losses were produced by Ruminococcus albus , followed by Bacteroides succinogenes , with Ruminococcus flavefaciens effecting the least change, regardless of the nature of the cell wall provided as a substrate. Xylose was more readily lost from primary cell walls than glucose during the early stages of attack, but both were lost at a common rate from fibre cell walls. Dry matter losses produced by the hemicellulolytic strain, Bacteroides ruminocola , were limited even after extended incubation. Electron microscopy indicated that R. albus was less commonly attached to cell walls than were the other cellulolytic strains, although evidence of capsular material was present. Bacteroides succinogenes was seen with an extensive capsule which enveloped clusters of cells, forming micro-colonies in association with the plant cell wall. Vesicle-like structures, commonly associated with the cellulolytic bacteria R. albus and B. succinogenes , were found on comparatively few occasions in this study.  相似文献   

11.
Three different ruminal fungi, a Neocallimastix sp. (strain LM-1), a Piromonas sp. (strain SM-1), and a Sphaeromonas sp. (strain NM-1), were grown anaerobically in liquid media which contained a suspension of either 1% (wt/vol) purified cellulose or finely milled wheat straw as the source of fermentable carbon. Fungal biomass was estimated by using cell wall chitin or cellular protein in cellulose cultures and chitin in straw cultures. Both strains LM-1 and SM-1 degraded cellulose with a concomitant increase in fungal biomass. Maximum growth of both fungi occurred after incubation for 4 days, and the final yield of protein was the same for both fungi. Cellulose degradation continued after growth ceased. Strain NM-1 failed to grow in the cellulose medium. All three anaerobic fungi grew in the straw-containing medium, and loss of dry weight from the cultures indicated degradation of straw to various degrees (LM-1 greater than SM-1 greater than NM-1). The total fiber component and the cellulose component of the straw were degraded in similar proportions, but the lignin component remained undegraded by any of the fungi. Maximum growth yield on straw occurred after 4 days for strain LM-1 and after 5 days for strains SM-1 and NM-1. The calculated yield of cellular protein for strain LM-1 was twice that of both strains SM-1 and NM-1. The cellular protein yield of strain SM-1 was the same in both cellulose and straw cultures. In contrast to cellulose, straw degradation ceased after the end of the growth phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Suspensions of mixed rumen protozoa were added to incubations of the anaerobic fungus Neocallimastix patriciarum with rice straw cell walls. The protozoa did not influence the dry matter lost from the straw, or the solubilization of monosaccharides, but they had a marked effect on the fermentation products formed. Studies with 14C-labelled protozoa suggested that the presence of protozoa reduced the fungal carboxymethylcellulase activity to around half of that found in pure cultures of the fungus.  相似文献   

14.
【目的】探讨碳源和甲烷菌对厌氧真菌碳代谢的影响。【方法】利用体外批次厌氧发酵法,比较厌氧真菌纯培养(Orpinomyces sp.和Neocallimastix sp.)及其与甲烷菌共培养(F1:Orpinomyces sp.+Methanobrevibacter sp.和N3:Neocallimastix sp.+Methanobrevibacter sp.)发酵不同类型碳水化合物代谢产物的差异。【结果】对厌氧真菌和甲烷菌共培养F1和N3的研究显示,F1发酵木薯粉[(26.44±0.22)mmol/L]的乳酸产量是发酵玉米芯[(1.31±0.04)mmol/L]的20.18倍,是N3发酵木薯粉[(1.59±0.03)mmol/L]的16.63倍,玉米芯[(0.79±0.08)mmol/L]的33.47倍。当F1和N3中的厌氧真菌纯培养时,各组乳酸产量均1.90 mmol/L。对F1进一步研究,结果显示发酵体系中木薯粉添加量在0.8%–2.0%之间时,乳酸产量随木薯粉添加量增加而增加。当含量在1.0%–2.4%之间时,随木薯粉添加量增加,甲烷和乙酸产量逐渐降低。比较F1发酵大米粉、木薯粉、玉米粉、小麦粉和土豆粉的发酵结果,发现乳酸产量与底物中支链淀粉的含量成正相关(R2=0.9554)。当F1发酵葡萄糖和麦芽糖时,乳酸产量5.00 mmol/L。当以麦芽糊精为底物时,乳酸产量高达(28.00±0.95)mmol/L。【结论】本文首次报道碳源和甲烷菌能够增强厌氧真菌的乳酸代谢途径并且这种增强存在种属特异性。  相似文献   

15.
T-RFLP分析厌氧真菌传代频率对共存产甲烷菌菌群的影响   总被引:1,自引:0,他引:1  
【目的】建立瘤胃产甲烷菌T-RFLP多样性分析方法,并研究厌氧真菌与产甲烷菌共培养液在不同时间传代对共存产甲烷菌菌群的影响。【方法】利用产甲烷菌mcrA基因特异性引物PCR扩增后,选择合适内切酶对扩增产物进行内切,分析内切后末端片段长度多态性,测定共培养液在不同传代频率时共存产甲烷菌多样性的变化。【结果】利用Msp I内切酶分析发现,末端片段长度约为470 bp的产甲烷菌为共培养液中的优势甲烷菌,共培养液传代至第15代时,片段长度约为130 bp和200 bp的产甲烷菌也成为共培养中的优势菌株;比较发现,Taq I能更好地内切共培养液中甲烷菌mcrA基因序列,瘤胃内容物及3 d传代共培养液中产甲烷菌主要为末端片段长度约为70、100、200、270、300、330和470 bp的菌株,共培养液在体外传代培养过程中,末端片段长度约为70、100、270和470 bp的产甲烷菌变化更为显著。Taq I比较分析不同传代频率(3、5和7 d)对共培养液中产甲烷菌菌群结构的影响表明,3 d传代的共培养液中产甲烷菌菌群与瘤胃内容物较为相似,而5 d和7 d传代的共培养液中产甲烷菌菌群间差异较小,但与瘤胃内容物差异较大,导致不同传代频率的共培养液中产甲烷菌菌群间显著差异的最主要菌株为末端片段长度约为100 bp的产甲烷菌,其次为末端片段长度约为70 bp和270 bp的产甲烷菌。【结论】利用建立的快速可行的瘤胃产甲烷菌T-RFLP方法分析表明,传代频率显著影响厌氧真菌与产甲烷菌共培养液中产甲烷菌的菌群结构,3 d传代共培养液内产甲烷菌菌群与瘤胃内容物更相似。  相似文献   

16.
Water-soluble cellodextrins were prepared from microcrystalline cellulose by using fuming hydrochloric acid and acetone precipitation. This cellodextrin preparation contained only trace amounts of glucose and cellobiose and was primarily composed of cellotetraose and cellopentaose. When various species of cellulolytic and noncellulolytic bacteria were cultured with cellodextrins, their growth rates and maximal optical densities were in most cases similar to those observed with cellobiose. Time course samplings and analyses of cellodextrins by high-pressure liquid chromatography indicated that longer-chain cellodextrins were hydrolyzed extracellularly to cellobiose and cellotriose. Cellodextrin utilization by noncellulolytic rumen bacteria and extracellular hydrolysis of cellodextrins increase the possibility that cross-feeding occurs in the rumen and help to explain the high numbers of noncellulolytic bacteria in ruminants fed fibrous diets.  相似文献   

17.
The fermentative characteristics of anaerobic rumen fungi   总被引:4,自引:0,他引:4  
Substrate utilization and fermentation characteristics of rumen fungi of the genus Neocallimastix are described. Preliminary observations on the removal of monosaccharides from plant cell walls and the effect of fermentation products on growth of Neocallimastix sp. (isolate R1) are presented. The properties of rumen fungi are discussed in relation to their role in the rumen.  相似文献   

18.
19.
Abstract: Microbial plasmalogen aldehydes (detected as dimethyl acetals, DMA) have been used to compare microbial populations associated with clover and barley straw incubated in nylon mesh bags in the rumen of a cow. The results suggest that the populations involved in the digestion of these substrates differ substantially and that population changes occur as digestion proceeds: these conclusions were supported by electron-microscopic observations. Analysis of DMA suggested that populations associated with the particles of straw and clover differed more markedly than the corresponding populations in the liquid phase. When straw was pre-incubated with the rumen cellulolytic bacterium Ruminococcus flavefaciens strain 17, the DMA characteristic of this bacterium were present at increased levels during subsequent incubation of the straw in the rumen, though the R. flavefaciens DMA tended to contribute a smaller proportion of the total DMA as the incubation time in the rumen was increased from 24 to 72h.  相似文献   

20.
Syntrophospora bryantii degraded butyrate in co-culture with methanogens that can use both H2 and formate for growth, but not in co-culture with methanogens that metabolize only H2, suggesting that in suspended cultures formate may be a more important electron carrier in the syntrophic degradation of butyrate than H2. Syntrophic butyrate oxidation was inhibited by the addition of 20 mm formate or the presence of 130 kPa H2. In the absence of methanogens, S. bryantii is able to couple the oxidation of butyrate to acetate with the reduction of pentenoate to valerate. Under these conditions, up to 300 Pa H2 was measured in the gas phase and up to 0.3 mm formate in the liquid phase. S. bryantii was unable to grow syntrophically with the aceticlastic methanogen Methanothrix soehngenii. However in triculture with Methanospirillum hungatei and Methanothrix soehngenii, S. bryantii degraded butyrate faster than in a biculture with only M. hungatei. Hydrogenase and formate dehydrogenase activities were demonstrated in cell-free extracts of S. bryantii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号