首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Journal of Comparative Physiology A - We have recorded from single auditory nerve fibres in the lizard,Gekko gecko, while changing the animal's temperature within the range 19–30 °C....  相似文献   

3.
4.
Summary The nerve fibre layer and the neurocord of the Enteropneusts Saccoglossus horsti, Harrimania kupfferi and Ptychodera flava have been examined with the electron microscope. The nerve fibres vary in diameter between 0.15 to 10 m. The majority of the fibres are of the smaller diameters. The nerve fibre layer is intraepidermal, and is divided by processes running radially from the epithelial cells to the basement membrane that separates the nerve fibre layer from the muscle cells.The cells of origin of these nerve fibres are situated mainly in the innermost layers of the epidermal cells. The nerve fibre profiles contain numerous vesicles of very varied diameter and contents, together with larger granular inclusions that are also found in the nerve cell bodies.Morphologically recognisable synapses are rare, but the majority of fibres are in intimate contact with one another. Sometimes the mass of fibres is divided into bundles by the epithelial cell processes. The majority of giant fibres are situated near to the basement membrane of the neurocord. The giant fibres also have a varied content of vesicles as well as neurofilaments and neurotubules.The central canal in Ptychodera flava and the remnants of the central canal in Saccoglossus horsti are both lined by columnar cells that bear microvilli as well as cilia with the typical 9 + 2 pattern of tubules. Scattered amongst these cells are mucus secreting cells which open into the cavity of the canal.I (P.N.D.) should like to thank Professor J. Z. Young, F. B. S. for much advice and encouragement. Dr. R. Bellairs generously provided the electron microscope facilities, and Dr. R. Newell kindly collected and identified the Saccoglossus specimens. Mr. R. Moss, Mrs. J. Hamilton and Mr. A. Aldrich gave excellent technical and photographic assistance.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Myelinated fibres less than 1 micrometer in diameter are rare in the peripheral nervous system; but fibres down to 0.2 micrometer in diameter exist in the central nervous system. These observations are consistent with Rushton's theory on the effects of fibre size on conduction in myelinated nerve when the different processes of myelination in the peripheral and central nervous systems are taken into account.  相似文献   

13.
Summary The present work was undertaken to determine by immunocytochemical methods which of the putative enteric neurotransmitters are contained in axons supplying the guinea-pig taenia coli and what proportion of axons is accounted for by the presence of these substances. Numerous fibres displayed immunoreactivity for dynorphin (DYN), enkephalin (ENK), -aminobutyric acid (GABA), nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP), but, in contrast to other gut regions, fibres showing immunoreactivity for gastrin-releasing peptide, galanin and neuropeptide Y were rare in the taenia. Fibres reactive for calbindin, calcitonin gene-related peptide, cholecystokinin, 5-hydroxytryptamine and somatostatin were also rare. Tyrosine hydroxylase-like immunoreactivity (TH-LI) was present in numerous fibres that disappeared after extrinsic denervation, a procedure that did not detectably affect any of the other major groups of fibres. Simultaneous staining of extrinsically denervated preparations revealed that SP-LI and VIP-LI were located in separate fibres, and ultrastructural studies showed these to be 58% and 33% of intrinsic fibres supplying the muscle. Immunoreactivity for the general marker, neuron-specific enolase, was located in 95–98% of axons. ENK-LI and DYN-LI were in the same axons, and similar proportions of the fibres with either SP-LI or VIP-LI, about 85%, contained immunoreactivity for ENK and DYN. All VIP-LI fibres, but no SP-LI fibres, were reactive for NOS. The results imply that the taenia of the guinea-pig caecum is innervated by two major groups of enteric neurons: (i) excitatory neurons that contain ACh, SP, other tachykinins, and, in most cases, DYN-LI and ENK-LI; and (ii) inhibitory neurons that contain NOS-LI, VIP-LI, in most cases, the two opioids and, quite probably, ATP as a transmitter. GABA-LI is contained in a smaller population of intrinsic axons. Even though the taenia represents one of the simplest tissues for examining transmission from enteric neurons to intestinal muscle, it shares some of the complexity of other regions, in that four major axon types supply the muscle and both the enteric excitatory and enteric inhibitory neurons contain multiple transmitters.  相似文献   

14.
The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin–Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 μm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 μm. Calculated strength–duration time constants ranged from 128.5 to 183.0 μs at 37°C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength–duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship. At the time of this research J. E. Smit was with the University of Pretoria.  相似文献   

15.
 The myelin sheath is normally regarded as an electrical insulator. Low values of radial conductance and capacitance have been measured, and in electrical models of myelinated axons the contribution of longitudinal conduction within the sheath has been ignored. According to X-ray diffraction studies, however, myelin sheaths comprise alternate lipid and aqueous layers, and the latter may be expected to have a low resistivity. We propose a new model of myelinated axons in which the aqueous layers within the myelin provide appreciable longitudinal and radial conductance, the latter via a spiral pathway. We have investigated the likely contribution of these conductive paths within the myelin to the electrical properties of a human motor nerve fibre by computer simulation, representing the myelin sheath as a series of interconnecting parallel lamellae. With this new model, action potential conduction has been simulated along a 20-node cable, and the electrotonic responses to 100-ms depolarizing and hyperpolarizing current pulses have been simulated for a uniformly polarized fibre. We have found that the hypothesis of a longitudinally conducting myelin sheath improves our previous model in two ways: it is no longer necessary to make implausible assumptions about the resistivity or width of the periaxonal space to simulate realistic electrotonus, and the conduction velocity is appreciably faster (by 8.6%). Received: 19 April 1999 / Accepted in revised form: 11 September 2000  相似文献   

16.
Single action potentials and their conduction times were recorded extracellularly from dog and human lower sacral nerve roots. Conduction velocity frequency distribution histograms were constructed and peaks of single extrafusal and intrafusal motoneuron distributions were identified. The electrophysiologically measured roots were removed and morphometrically analysed. Nerve fibre diameter frequency distribution histograms were constructed with respect to 3 myelin sheath thickness ranges, and peaks of single motoneuron group distributions were identified. The identified motoneuron classes, characterized by their group peak values of conduction velocity at about 36 degrees C and fibre diameter were: dog: intrafusal: gamma 22(23ms-1/4.8 microns),gamma 21(33/5.7), gamma 1 (43/6.7),gamma beta?(54/10.1) extrafusal: alpha 3(61ms-1/11.7 microns),alpha 2(72/13.6), alpha 11 (81/15.2), alpha 12(86/16.8),alpha 13(95/19) human: intrafusal: gamma 21(15ms-1/5.8 microns), gamma 1(20/6.8), gamma beta?(27/7.2) extrafusal: alpha 3(37ms-1/8.3 microns),alpha 2(50/10.2), alpha 1(60/13.1) The 60 (alpha 3) to 30% (alpha 1-motoneurons) higher conduction velocities in dogs as compared to humans seem to originate in the 40 (alpha 3) to 30% (alpha 1-motoneurons) larger nerve fibre diameters. However, the myelin sheath seemed to be 0.1 to 0.2 microns thinner in dogs than in humans. The pair-values "conduction velocity-fibre diameter" of the alpha and gamma-motoneuron groups were lying on different correlation curves in the velocity-diameter plane indicating structural and/or geometrical differences between alpha and gamma-motoneurons.  相似文献   

17.
Explants of hippocampus from rats at various ages evoked an intense nerve fibre growth from cocultured superior cervical ganglion and septum explants taken from newborn rats. The addition of antiserum to nerve growth factor (NGF) into the culture medium inhibited the outgrowth of nerve fibres from superior cervical ganglia, while septum explants still extended nerve fibres in the same medium.Septum explants responded to added NGF, as well as to cocultured hippocampus, during the first postnatal week only, whereas ganglia extended nerve fibres in NGF-containing cultures throughout the postnatal period and even at the age of 6 months if superoptimal concentration of NGF was used.The present results suggest that hippocampus releases NGF and some other growth factor(s) in culture throughout the postnatal period from birth to adulthood. On the other hand, the capacity of septum to extend nerve fibres in response to the growth factors appears to be restricted to the first postnatal week.  相似文献   

18.
Explants of atrium, vas deferens and lung from 5-day-old rats were grown between, and 1–2 mm from, a row each of sympathetic ganglia and spinal cord explants. After 5 days the amount of sympathetic nerve fibre growth in cultures with atrium or vas deferens (but not lung) was greater than in controls and directed towards the tissues. In contrast, in cultures with atrium, vas deferens and lung, the direction and amount of nerve growth from spinal cord explants was not significantly different from controls. Further, when sympathetic ganglia were grown between, and 1–2 mm from, a row each of atrium and ventricle explants, the total amount of nerve growth was increased and directed mainly towards the atrium. The results are discussed in relation to the hypothesis that normally densely innervated autonomic effector organs contain higher levels of Nerve Growth Factor than tissues which become more sparsely innervated, and that this allows nerve fibres from sympathetic ganglia (but not NGF-insensitive spinal cord) to distinguish between different tissues from a distance.  相似文献   

19.
The thymus plays a critical role in establishing and maintaining the peripheral T-cell pool. It does so by providing a microenvironment within which T-cell precursors differentiate and undergo selection processes to create a functional population of major histocompatibility complex-restricted, self-tolerant T cells. These cells are central to adaptive immunity. Thymic T-cell development is influenced by locally produced soluble factors and cell-to-cell interactions, as well as by sympathetic noradrenergic and endocrine system signalling. Thymic lymphoid and non-lymphoid cells have been shown not only to express beta- and alpha(1)- adrenoceptors (ARs), but also to synthesize catecholamines (CAs). Thus, it is suggested that CAs influence T-cell development via both neurocrine/endocrine and autocrine/paracrine action, and that they serve as immunotransmitters between thymocytes and nerves. CAs acting at multiple sites along the thymocyte developmental route affect T-cell generation not only numerically, but also qualitatively. Thymic CA level and synthesis, as well as AR expression exhibit sex steroid-mediated sexual dimorphism. Moreover, the influence of CAs on T-cell development exhibits glucocorticoid-dependent plasticity. This review summarizes recent findings in this field and our current understanding of complex and multifaceted neuroendocrine-immune communications at thymic level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号