首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Background

Ischemia reperfusion (I/R) is common in various pathological conditions like diabetic complication, rheumatic arthritis, necrotizing vascular occlusive disease and trauma.

Methods

We have evaluated the effect of tacrolimus (1, 2 and 3 mg/kg, p.o. for 10 consecutive days) on femoral arterial ischemic reperfusion (I/R) induced neuropathic pain in rats. Behavioral parameters (i.e. hot plate, radiant heat, acetone drop, tail heat hyperalgesia, tail flick and tail cold allodynia tests) were assessed at different time intervals (i.e. 0, 1, 4, 7, 10, 13 and 16th day) and biochemical analysis in serum and tissue samples were also performed along with histopathological studies.

Results

Behavioral pain assessment revealed increase in the paw and tail withdrawal threshold in tacrolimus treated groups against hyperalgesic and allodynic stimuli as compared to the sham control group. We observed a decrease in the serum nitrate and thiobarbituric acid reactive substance (TBARS) levels along with reduction in tissue myeloperoxidase (MPO) and total calcium levels, whereas, rise in tissue reduced glutathione levels in tacrolimus treated groups. However, significant results were obtained in medium and high dose treated group as compared to sham control group. Histopathological study had revealed the increase in the neuronal edema and axonal degeneration in the I/R group whereas, tacrolimus ameliorate these effects.

Conclusion

Our results indicate the anti-oxidative, anti-inflammatory and calcium modulatory actions of tacrolimus. Therefore, it can be used as a therapeutic agent for the treatment of vascular inflammatory related neuropathic pain.  相似文献   

2.
Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03–1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.  相似文献   

3.
AimsWe previously reported that cysteinyl leukotriene receptor 2 (CysLT2) mediates ischemic astrocyte injury, and leukotriene D4-activated CysLT2 receptor up-regulates the water channel aquaporin 4 (AQP4). Here we investigated the mechanism underlying CysLT2 receptor-mediated ischemic astrocyte injury induced by 4-h oxygen-glucose deprivation and 24-h recovery (OGD/R).Main methodsPrimary cultures of rat astrocytes were treated by OGD/R to construct the cell injury model. AQP4 expression was inhibited by small interfering RNA (siRNA). The expressions of AQP4 and CysLTs receptors, and the MAPK signaling pathway were determined.Key findingsOGD/R induced astrocyte injury, and increased expression of the CysLT2 (but not CysLT1) receptor and AQP4. OGD/R-induced cell injury and AQP4 up-regulation were inhibited by a CysLT2 receptor antagonist (Bay cysLT2) and a non-selective CysLT receptor antagonist (Bay u9773), but not by a CysLT1 receptor antagonist (montelukast). Knockdown of AQP4 by siRNA attenuated OGD/R injury. Furthermore, OGD/R increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the cell injury and AQP4 up-regulation.SignificanceThe CysLT2 receptor mediates AQP4 up-regulation in astrocytes, and up-regulated AQP4 leads to OGD/R-induced injury, which results from activation of the ERK1/2 and p38 MAPK pathways.  相似文献   

4.
The treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Cav3.1 and Cav3.2 channel inhibitory activities. Among potent inhibitors against both Cav3.1 and Cav3.2 channels, a promising compound 20n based on in vitro ADME properties displayed satisfactory plasma and brain exposure in rats according to in vivo pharmacokinetic studies. We further demonstrated that 20n effectively improved the symptoms of neuropathic pain in both SNL and STZ neuropathic pain animal models, suggesting modulation of T-type calcium channels can be a promising therapeutic strategy for the treatment of neuropathic pain.  相似文献   

5.
BackgroundPeripheral nerve injury can produce chronic and ultimately neuropathic pain. The chronic constriction injury (CCI) model has provided a deeper understanding of nociception and chronic pain. Loganin is a well-known herbal medicine with glucose-lowering action and neuroprotective activity.PurposeThis study investigated the molecular mechanisms by which loganin reduced CCI-induced neuropathic pain.MethodsSprague–Dawley rats were randomly divided into four groups: sham, sham+loganin, CCI and CCI+loganin. Loganin (1 or 5 mg/kg/day) was injected intraperitoneally once daily for 14 days, starting the day after CCI. For behavioral testing, mechanical and thermal responses were assessed before surgery and on d1, d3, d7 and d14 after surgery. Sciatic nerves (SNs) were collected to measure proinflammatory cytokines. Proximal and distal SNs were collected separately for Western blotting and immunofluorescence studies.ResultsThermal hyperalgesia and mechanical allodynia were reduced in the loganin-treated group as compared to the CCI group. Loganin (5 mg/kg/day) prevented CCI from inducing proinflammatory cytokines (TNF-α, IL-1β), inflammatory proteins (TNF-α, IL-1β, pNFκB, pIκB/IκB, iNOS) and receptor (TNFR1, IL-1R), adaptor protein (TRAF2) of TNF-α, and Schwann cell demyelination and axonal damage. Loganin also blocked IκB phosphorylation (p-IκB). Double immunofluorescent staining further demonstrated that pNFκB/pIκB protein was reduced by loganin in Schwann cells on d7 after CCI. In the distal stumps of injured SN, Schwann cell demyelination was correlated with pain behaviors in CCI rats.ConclusionOur findings indicate that loganin improves CCI-induced neuroinflammation and pain behavior by downregulating TNF-α/IL-1β-dependent NF-κB activation.  相似文献   

6.
Diabetic neuropathic pain is characterized by spontaneous pain with hyperalgesia and allodynia. We investigated whether (?)‐epigallocatechin‐3‐O‐gallate could improve diabetic neuropathic pain development through hypoglycemic, hypolipidemic, antioxidant, and anti‐inflammatory effects. Diabetes was induced in rats by streptozotocin (55 mg/kg/once) and treated with (?)‐epigallocatechin‐3‐O‐gallate (25 mg/kg/orally/once/daily/5 weeks). Diabetic rats showed an increase in serum levels of glucose, nitric oxide, triglyceride, total cholesterol, and low‐density lipoprotein‐cholesterol with a decrease in high‐density lipoprotein‐cholesterol and body weight. Also, there was an elevation in brain malondialdehyde with a marked reduction in brain levels of glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione‐S‐transferase. Furthermore, diabetic rats showed a clear reduction in plasma levels of insulin and an increase in plasma cytokines (interleukin‐6 and tumor necrosis factor‐α). Moreover, diabetic rats exhibited hyperalgesia as indicated by a hot plate, tail immersion, formalin, and carrageenan‐induced edema tests as well as brain histopathological changes (neuron degeneration, gliosis, astrocytosis, congestion and hemorrhage). (?)‐Epigallocatechin‐3‐O‐gallate treatment ameliorated alterations in body weight, biochemical parameters, pain sensation, and histopathological changes in brain tissue. (?)‐Epigallocatechin‐3‐O‐gallate offers promising hypoglycemic, hypolipidemic, antioxidant and anti‐inflammatory effects, which can prevent the development and progression of diabetic neuropathic pain.  相似文献   

7.
AimsCannabinoid CB2 agonists have been shown to alleviate behavioral signs of inflammatory and neuropathic pain in animal models. AM1241, a CB2 agonist, does not demonstrate central nervous system side effects seen with CB1 agonists such as hypothermia and catalepsy. Metastatic bone cancer causes severe pain in patients and is treated with analgesics such as opiates. Recent reports suggest that sustained opiates can produce paradoxical hyperalgesic actions and enhance bone destruction in a murine model of bone cancer. In contrast, CB2 selective agonists have been shown to reduce bone loss associated with a model of osteoporosis. Here we tested whether a CB2 agonist administered over a 7 day period inhibits bone cancer-induced pain as well as attenuates cancer-induced bone degradation.Main methodsA murine bone cancer model was used in which osteolytic sarcoma cells were injected into the intramedullary space of the distal end of the femur. Behavioral and radiographic image analysis was performed at days 7, 10 and 14 after injection of tumor cells into the femur.Key findingsOsteolytic sarcoma within the femur produced spontaneous and touch evoked behavioral signs of pain within the tumor-bearing limb. The systemic administration of AM1241 acutely or for 7 days significantly attenuated spontaneous and evoked pain in the inoculated limb. Sustained AM1241 significantly reduced bone loss and decreased the incidence of cancer-induced bone fractures.SignificanceThese findings suggest a novel therapy for cancer-induced bone pain, bone loss and bone fracture while lacking many unwanted side effects seen with current treatments for bone cancer pain.  相似文献   

8.
ObjectiveTo investigate the analgesic effect of amitriptyline on neuropathic pain model rats, diabetic neuropathic pain model rats and fibromyalgia model rats.MethodsThe healthy male Sprague wrote – Dawley (SD) rats were taken as the research object, and they were randomly divided into model group (group A), beside the sciatic nerve and injection of 5 mm amitriptyline group (group B), beside the sciatic nerve and injection of 10 mm amitriptyline group (group C), beside the sciatic nerve and injection of 15 mm amitriptyline group (group D), intraperitoneal injection of amitriptyline group (group E). Pain induced by selective injury of sciatic nerve branches in rats, pain induced by chronic compression of sciatic nerve, diabetic neuropathic pain and fibromyalgia were conducted to determine the pain threshold of mechanical stimulation in rats after drug administration.ResultsThe pain threshold of mechanical stimulation in the local amitriptyline group (group B, C, D) was significantly higher than that in the group A and group E at each time point after drug treatment, and the pain threshold of mechanical stimulation gradually increased with the increase of concentration. There was no statistically significant difference in mechanical stimulation pain threshold between group A and group E at each time point after drug treatment.ConclusionPara-sciatic injection of amitriptyline at different concentrations has analgesic effects on neuropathic pain, diabetic neuropathic pain and fibromyalgia in rat models, and amitriptyline directly ACTS on the local sciatic nerve.  相似文献   

9.
Background and aim It has been reported that intestinal ischemia–reperfusion (I/R) injury results from oxidative stress caused by increased reactive oxygen species. Dexpanthenol (Dxp) is an alcohol analogue with epitelization, anti-inflammatory, antioxidant, and increasing peristalsis activities. In the present study, the aim was to investigate protective and therapeutic effects of Dxp against intestinal I/R injury. Materials and methods Overall, 40 rats were assigned into five groups including one control, one alone Dxp, and three I/R groups (40-min ischemia; followed by 2-h reperfusion). In two I/R groups, Dxp (500?mg/kg, i.m.) was given before or during ischemia. The histopathological findings including apoptotic changes, and also tissue and serum biochemical parameters levels, were determined. Oxidative stress and ileum damage were assessed by biochemical and histological examination. In the control (n?=?8) and alone Dxp (n?=?8; 500?mg/kg, i.m. of Dxp was given at least 30?min before recording), groups were incised via laparotomy, and electrical activity was recorded from their intestines. In this experiment, the effect of Dxp on the motility of the intestine was examined by analyzing electrical activity. Results In ileum, oxidant levels were found to be higher, while antioxidant levels were found to be lower in I/R groups when compared with controls. Dxp approximated high levels of oxidants than those in the control group, while it increased antioxidant values compared with I/R groups. Histopathological changes caused by intestinal I/R injury and histological improvements were observed in both groups given Dxp. In the Dxp group, electrical signal activity markedly increased compared with the control group. Conclusions Here, it was seen that Dxp had protective and therapeutic effects on intestinal I/R injury and gastrointestinal system peristaltism.  相似文献   

10.
目的:探讨缺血预处理对缺血-再灌注所致急性肾损伤的保护作用与可能机制。方法:将健康雄性SD大鼠18只随机分为三组:假手术组(Sham组)、肾缺血组(I/R组)、实验组,Sham组大鼠开腹后游离左侧肾蒂血管,不夹闭,观察60 min关闭腹部。I/R组大鼠开腹后切除右肾,左肾蒂血管分离,观察15 min后用无损伤动脉夹持续夹闭左肾蒂血管45 min后,关闭腹部,恢复左肾血流。实验组开腹后切除切除右肾,左肾蒂血管分离,行4个循环夹闭左肾蒂血管1 min/再灌注4 min预处理后,无损伤动脉持续夹闭45 min,关闭腹部,恢复左肾血流。比较各组大鼠术后尿素氮值(Burea nitrogen,BUN)与肌酐值(Serum creatinine,SCR)水平,肾组织病理学评分及微管相关蛋白轻链3(Microtubule-associated protein l light chain 3,LC3)和自噬基因Beclin-1的表达。结果:所有大鼠在实验过程无死亡。I/R组、实验组再灌注后4 h、24 h的BUN与SCr值显著高于Sham组(P0.05),肾脏组织病理学评分显著高于Sham组(P0.05),实验组以上指标均显著低于I/R组(P0.05);I/R组LC3-Ⅱ/LC3-Ⅰ比值、Beclin-1相对表达量显著高于Sham组(P0.05),实验组以上指标均显著低于I/R组(P0.05)。实验组大鼠再灌注后24h LC3-Ⅱ/LC3-Ⅰ比值、Beclin-1相对表达量与肾组织病理学评分、BUN、SCr值呈显著相关性(P0.05)。结论:缺血预处理可能通过激活自噬,减轻缺血-再灌注所致急性肾损伤,并改善肾功能。  相似文献   

11.
The diversity of receptor signaling is increased by receptor heteromerization leading to dynamic regulation of receptor function. While a number of studies have demonstrated that family A G-protein-coupled receptors are capable of forming heteromers in vitro, the role of these heteromers in normal physiology and disease has been poorly explored. In this study, direct interactions between CB1 cannabinoid and delta opioid receptors in the brain were examined. Additionally, regulation of heteromer levels and signaling in a rodent model of neuropathic pain was explored. First we examined changes in the expression, function and interaction of these receptors in the cerebral cortex of rats with a peripheral nerve lesion that resulted in neuropathic pain. We found that, following the peripheral nerve lesion, the expression of both cannabinoid type 1 receptor (CB1R) and the delta opioid receptor (DOR) are increased in select brain regions. Concomitantly, an increase in CB1R activity and decrease in DOR activity was observed. We hypothesize that this decrease in DOR activity could be due to heteromeric interactions between these two receptors. Using a CB1R-DOR heteromer-specific antibody, we found increased levels of CB1R-DOR heteromer protein in the cortex of neuropathic animals. We subsequently examined the functionality of these heteromers by testing whether low, non-signaling doses of CB1R ligands influenced DOR signaling in the cortex. We found that, in cortical membranes from animals that experienced neuropathic pain, non-signaling doses of CB1R ligands significantly enhanced DOR activity. Moreover, this activity is selectively blocked by a heteromer-specific antibody. Together, these results demonstrate an important role for CB1R-DOR heteromers in altered cortical function of DOR during neuropathic pain. Moreover, they suggest the possibility that a novel heteromer-directed therapeutic strategy for enhancing DOR activity, could potentially be employed to reduce anxiety associated with chronic pain.  相似文献   

12.
Renal ischemia–reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague–Dawley rats were divided into four groups: control, UD alone, I/R and I/R?+?UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3?days before I/R, UD (2?ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.  相似文献   

13.
Abstract

The antioxidant effects of ellagic acid (EA) and hesperidin (HES) against skeletal muscle ischemia/reperfusion injury (I/R) were performed. Hindlimb ischemia has been induced by tourniquet occlusion for 2?h on left hindlimb. At the end of ischemia, the tourniquate has been removed and initiated reperfusion for 2?h. EA (100?mg/kg) has been applied orally before ischemia/reperfusion in the EA?+?I/R group. HES (100?mg/kg) has been given orally in the HES?+?I/R group. The left gastrocnemius muscle has been harvested and stored immediately at??80?°C until assessed for the levels of MDA and antioxidant enzymes activities. MDA level has statistically increased in I/R group (p?<?0.05) compared to other groups. The muscle tissue antioxidant enzymes activities were lower than the other groups in the I/R group (p?<?0.05). EA and HES treatments significantly reversed the damage level in I/R, also activity of tissue SOD increased in the EA?+?I/R and HES?+?I/R groups.  相似文献   

14.
A growing body of evidence indicates that P2X receptors (P2XRs), a family of ligand-gated cation channels activated by extracellular ATP, play an important role in pain signaling. In contrast to the role of the P2X3R subtype that has been extensively studied, the precise roles of others among the seven P2XR subtypes (P2X1R-P2X7R) remain to be determined because of a lack of sufficiently powerful tools to specifically block P2XR signaling in vivo. In the present study, we investigated the behavioral phenotypes of a line of mice in which the p2rx4 gene was disrupted in a series of acute and chronic pain assays. While p2rx4 -/- mice showed no major defects in pain responses evoked by acute noxious stimuli and local tissue damage or in motor function as compared with wild-type mice, these mice displayed reduced pain responses in two models of chronic pain (inflammatory and neuropathic pain). In a model of chronic inflammatory pain developed by intraplantar injection of complete Freund's adjuvant (CFA), p2rx4 -/- mice exhibited attenuations of pain hypersensitivity to innocuous mechanical stimuli (tactile allodynia) and also of the CFA-induced swelling of the hindpaw. A most striking phenotype was observed in a test of neuropathic pain: tactile allodynia caused by an injury to spinal nerve was markedly blunted in p2rx4 -/- mice. By contrast, pain hypersensitivity to a cold stimulus (cold allodynia) after the injury was comparable in wild-type and p2rx4 -/- mice. Together, these findings reveal a predominant contribution of P2X4R to nerve injury-induced tactile allodynia and, to the lesser extent, peripheral inflammation. Loss of P2X4R produced no defects in acute physiological pain or tissue damaged-induced pain, highlighting the possibility of a therapeutic benefit of blocking P2X4R in the treatment of chronic pain, especially tactile allodynia after nerve injury.  相似文献   

15.
BackgroundCurrent therapies for neuropathic pain are generally symptomatic and possess several side effects, limiting their prolonged usage.Hypothesis/PurposeThus, it is urgent to develop novel and safe candidates for the management of this chronical condition. For this purpose, we investigated the analgesic effect of a standardized extract from Zingiber officinale Roscoe rhizomes (ZOE) obtained by CO2 supercritical extraction, in a mice model of peripheral neuropathy. We also explored the mechanism of action of ZOE and its main constituents using an in vitro model of neuroinflammation.MethodsPeripheral mono-neuropathy was induced in mice, by spared nerve injury (SNI). The analgesic effect of ZOE after oral administration was assessed by measuring mechanical and thermal allodynia in SNI mice. The mechanism of action of ZOE and its main constituents were investigated using spinal cords samples and in an in vitro model of neuroinflammation by ELISA, western blotting and immunofluorescence techniques.ResultsOral administration of ZOE 200 mg kg−1 ameliorated mechanical and thermal allodynia in SNI mice, with a rapid and a long-lasting effect. ZOE did not alter locomotor activity. In BV2 cells and spinal cord samples, ZOE, 6-gingerol and 6-shogaol reduced pERK levels, whereas ZOE and terpene fraction reduced HDAC1 protein levels, inhibited NF-κB signalling activation and decreased IL-1β, TNF-α and IL-6 release. ZOE and each tested constituent had a positive effect on inflammation-impaired SH-SY5Y cell viability.ConclusionsThe oral administration of ZOE attenuated SNI-induced neuropathic pain symptoms by reducing spinal neuroinflammation, suggesting ZOE as a novel and interesting candidate for the management of neuropathic pain.  相似文献   

16.
Li Y  Yao JH  Hu XW  Fan Z  Huang L  Jing HR  Liu KX  Tian XF 《Life sciences》2011,88(1-2):104-109
AimThe aim of this study is to evaluate the role of Rho-kinase in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R) and the preconditioning effects of fasudil hydrochloride. The novel therapeutic approach of using Rho-kinase inhibitors in the treatment of intestinal I/R is introduced.MethodsSprague–Dawley (SD) rats were divided into 4 groups: intestinal I/R group, two fasudil pretreatment groups (7.5 mg/kg and 15 mg/kg), and controls. Intestinal and lung histopathology was evaluated; myeloperoxidase (MPO) and superoxide dismutase (SOD) levels in lung parenchyma were determined. Serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. eNOS and P-ERM expression were measured by Western Blot.ResultsLung and intestinal injury were induced by intestinal I/R, characterized by histological damage and a significant increase in BALF protein. Compared to controls, serum TNF-α, IL-6, and lung MPO activity increased significantly in the I/R group, while SOD activity decreased. A strongly positive P-ERM expression was observed, while eNOS expression was weak. After fasudil administration, injury was ameliorated. Serum TNF-α, IL-6, lung MPO and P-ERM expression decreased significantly as compared to the I/R group, while SOD activity and eNOS expression increased significantly.SignificanceRho-kinase plays a key role in the pathogenesis of lung injury induced by intestinal I/R. The inhibition of the Rho-kinase pathway by fasudil hydrochloride may prevent lung injury.  相似文献   

17.
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2′,3′-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5′-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.  相似文献   

18.
The production of reactive oxygen species and inflammatory events are the underlying mechanisms of ischemia-reperfusion injury (IRI). It was determined that transient receptor potential melastatin-2 (TRPM2) channels and phospholipase A2 (PLA 2) enzymes were associated with inflammation and cell death. In this study, we investigated the effect of N-( p-amylcinnamoyl) anthranilic acid (ACA), a TRPM2 channel blocker, and PLA 2 enzyme inhibitor on renal IRI. A total of 36 male Sprague-Dawley rats were divided into four groups: control, ischemia-reperfusion (I/R), I/R + ACA 5 mg, I/R + ACA 25 mg. In I/R applied groups, the ischemia for 45 minutes and reperfusion for 24 hours were applied bilaterally to the kidneys. In the I/R group, serum levels of the blood urea nitrogen (BUN), creatinine, cystatin C (CysC), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin-18 increased. On histopathological examination of renal tissue in the I/R group, the formation of glomerular and tubular damage was seen, and it was detected that there was an increase in the levels of malondialdehyde (MDA), caspase-3, total oxidant status (TOS), and oxidative stress index (OSI); and there was a decrease in total antioxidant capacity (TAC) and catalase enzyme activity. ACA administration reduced serum levels of BUN, creatinine, CysC, KIM-1, NGAL, interleukin-18. In the renal tissue, ACA administration reduced histopathological damage, levels of caspase-3, MDA, TOS, and OSI; and it increased the level of TAC and catalase enzyme activity. It has been shown with the histological and biochemical results in this study that ACA is protective against renal IRI.  相似文献   

19.
AimsThis study aimed to investigate the effect of prolonged administration of bovine milk lactoferrin (bLF) on hyperalgesia and allodynia in a rat model of neuropathic pain and to determine the involvement of c-Fos, TNF-α, nitric oxide and opioidergic systems in this effect.Main methodsNeuropathic pain was induced in rats by loose ligation of the right sciatic nerve and evaluated by tests measuring the mechanical and thermal hyperalgesia and allodynia. bLF (50, 100, and 200 mg/kg) alone or in combination with opioidergic antagonists were administered intraperitoneally to the rats with neuropathic pain. c-Fos and NADPH-d immunocytochemistry and Western blotting for TNF-α, iNOS and nNOS were performed in the lumbar spinal cord of rats. Plasma TNF-α levels were determined with ELISA.Key findingsProlonged, but not single, administration of bLF produced antihyperalgesic and antiallodynic effects in neuropathic rats. Pretreatment with opioidergic antagonists significantly decreased this effect. Prolonged administration of bLF decreased c-Fos and NADPH-d immunoreactivity and TNF-α and iNOS expressions at 50 and 100 mg/kg and nNOS expression at 100 mg/kg in the lumbar spinal cord of neuropathic rats. Plasma TNF-α levels remained unchanged after bLF treatment.SignificanceProlonged administration of bLF exerts antihyperalgesic and antiallodynic effect in neuropathic rats; down-regulation of both TNF-α and iNOS expressions and potentiation of opioidergic system in the lumbar spinal cord can contribute to this effect.  相似文献   

20.
Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H2O2) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H2O2 concentration. However, one and 15 days after SNT, H2O2 concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号