首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guo FQ  Crawford NM 《The Plant cell》2005,17(12):3436-3450
The Arabidopsis thaliana protein nitric oxide synthase1 (NOS1) is needed for nitric oxide (NO) synthesis and signaling during defense responses, hormonal signaling, and flowering. The cellular localization of NOS1 was examined because it is predicted to be a mitochondrial protein. NOS1-green fluorescent protein fusions were localized by confocal microscopy to mitochondria in roots. Isolated mitochondria from leaves of wild-type plants supported Arg-stimulated NO synthesis that could be inhibited by NOS inhibitors and quenched by a NO scavenger; this NOS activity is absent in mitochondria isolated from nos1 mutant plants. Because mitochondria are a source of reactive oxygen species (ROS), which participate in senescence and programmed cell death, these parameters were examined in the nos1 mutant. Dark-induced senescence of detached leaves and intact plants progressed more rapidly in the mutant compared with the wild type. Hydrogen peroxide, superoxide anion, oxidized lipid, and oxidized protein levels were all higher in the mutant. These results demonstrate that NOS1 is a mitochondrial NOS that reduces ROS levels, mitigates oxidative damage, and acts as an antisenescence agent.  相似文献   

2.
Post-translational modifications of histones, including acetylation, play a key role in modulating dynamic changes in chromatin structure and gene activity. Histone acetylation is modulated through the action of histone acetyltransferases and deacetylases. HDA6 is a RPD3-type histone deacetylase in Arabidopsis. The Arabidopsis HDA6 mutant, axe1-5, and HDA6 RNA-interfering (HDA6-RNAi) plants displayed higher levels of acetylated H3 compared with wild-type, suggesting that HDA6 affects histone acetylation levels globally. The expression of the jasmonate responsive genes, PDF1.2, VSP2, JIN1, and ERF1, was down-regulated in axe1-5 and HDA6-RNAi plants. Furthermore, axe1-5 and HDA6-RNAi plants displayed increased leaf longevity compared with the wild type. The expression of the senescence-associated genes, SAG12 and SEN4, was down-regulated in the axe1-5 and HDA6-RNAi plants. In addition, axe1-5 and HDA6-RNAi plants displayed late-flowering. The expression of FLC was up-regulated and hyperacetylated in axe1-5 and HDA6-RNAi plants, suggesting that HDA6 is required to deacetylate FLC chromatin and thereby repress its expression. Our results suggest that HDA6 is involved in jasmonate response, senescence, and flowering in Arabidopsis.  相似文献   

3.
Vitamin E is considered a major antioxidant in biomembranes, but little evidence exists for this function in plants under photooxidative stress. Leaf discs of two vitamin E mutants, a tocopherol cyclase mutant (vte1) and a homogentisate phytyl transferase mutant (vte2), were exposed to high light stress at low temperature, which resulted in bleaching and lipid photodestruction. However, this was not observed in whole plants exposed to long-term high light stress, unless the stress conditions were extreme (very low temperature and very high light), suggesting compensatory mechanisms for vitamin E deficiency under physiological conditions. We identified two such mechanisms: nonphotochemical energy dissipation (NPQ) in photosystem II (PSII) and synthesis of zeaxanthin. Inhibition of NPQ in the double mutant vte1 npq4 led to a marked photoinhibition of PSII, suggesting protection of PSII by tocopherols. vte1 plants accumulated more zeaxanthin in high light than the wild type, and inhibiting zeaxanthin synthesis in the vte1 npq1 double mutant resulted in PSII photoinhibition accompanied by extensive oxidation of lipids and pigments. The single mutants npq1, npq4, vte2, and vte1 showed little sensitivity to the stress treatments. We conclude that, in cooperation with the xanthophyll cycle, vitamin E fulfills at least two different functions in chloroplasts at the two major sites of singlet oxygen production: preserving PSII from photoinactivation and protecting membrane lipids from photooxidation.  相似文献   

4.
The possible costs of inducible defences against pests were evaluated in tomato. To activate inducible resistance traits, we used transgenic plants that over-expressed the systemin precursor (prosystemin). The constitutive expression of the prosystemin, which is normally induced by herbivores in tomato, allowed the measurement of the impact of induced defences in a pest-free environment. The results showed that the continuous activation of traits that are normally induced by pests should be costly, affecting the growth, physiology and reproductive success of tomato plants.  相似文献   

5.
Novel mutations in the RSW1 and KNOPF genes were identified in a large-scale screen for mutations that affect cell expansion in early Arabidopsis embryos. Embryos from both types of mutants were radially swollen with greatly reduced levels of crystalline cellulose, the principal structural component of the cell wall. Because RSW1 was previously shown to encode a catalytic subunit of cellulose synthase, the similar morphology of knf and rsw1-2 embryos suggests that the radially swollen phenotype of knf mutants is largely due to their cellulose deficiency. Map-based cloning of the KNF gene and enzyme assays of knf embryos demonstrated that KNF encodes alpha-glucosidase I, the enzyme that catalyzes the first step in N-linked glycan processing. The strongly reduced cellulose content of knf mutants indicates that N-linked glycans are required for cellulose biosynthesis. Because cellulose synthase catalytic subunits do not appear to be N glycosylated, the N-glycan requirement apparently resides in other component(s) of the cellulose synthase machinery. Remarkably, cellular processes other than extracellular matrix biosynthesis and the formation of protein storage vacuoles appear unaffected in knf embryos. Thus in Arabidopsis cells, like yeast, N-glycan trimming is apparently required for the function of only a small subset of N-glycoproteins.  相似文献   

6.
J Braam  R W Davis 《Cell》1990,60(3):357-364
In response to water spray, subirrigation, wind, touch, wounding, or darkness, Arabidopsis regulates the expression of at least four touch-induced (TCH) genes. Ten to thirty minutes after stimulation, mRNA levels increase up to 100-fold. Arabidopsis plants stimulated by touch develop shorter petioles and bolts. This developmental response is known as thigmomorphogenesis. TCH 1 cDNA encodes the putative Arabidopsis calmodulin differing in one amino acid from wheat calmodulin. Sequenced regions of TCH 2 and TCH 3 contain 44% and 70% amino acid identities to calmodulin, respectively. The regulation of this calmodulin-related gene family in Arabidopsis suggests that calcium ions and calmodulin are involved in transduction of signals from the environment, enabling plants to sense and respond to environmental changes.  相似文献   

7.
Szymanski DB  Marks MD  Wick SM 《The Plant cell》1999,11(12):2331-2347
Actin microfilaments form a three-dimensional cytoskeletal network throughout the cell and constitute an essential throughway for organelle and vesicle transport. Development of Arabidopsis trichomes, unicellular structures derived from the epidermis, is being used as a genetic system in which to study actin-dependent growth in plant cells. The present study indicates that filamentous actin (F-actin) plays an important role during Arabidopsis trichome morphogenesis. For example, immunolocalization of actin filaments during trichome morphogenesis identified rearrangements of the cytoskeletal structure during the development of the mature cell. Moreover, pharmacological experiments indicate that there are distinct requirements for actin- and microtubule-dependent function during trichome morphogenesis. The F-actin-disrupting drug cytochalasin D does not affect the establishment of polarity during trichome development; however, maintenance and coordination of the normal pattern of cell growth are very sensitive to this drug. In contrast, oryzalin, an agent that depolymerizes microtubules, severely inhibits cell polarization. Furthermore, cytochalasin D treatment phenocopies a known class of mutations that cause distorted trichome morphology. Results of an analysis of cell shape and microfilament structure in wild-type, mutant, and drug-treated trichomes are consistent with a role for actin in the maintenance and coordination of an established growth pattern.  相似文献   

8.
The Escherichia coli AlkB protein (EcAlkB) is a DNA repair enzyme which reverses methylation damage such as 1-methyladenine (1-meA) and 3-methylcytosine (3-meC). The mammalian AlkB homologues ALKBH2 and ALKBH3 display EcAlkB-like repair activity in vitro, but their substrate specificities are different, and ALKBH2 is the main DNA repair enzyme for 1-meA in vivo. The genome of the model plant Arabidopsis thaliana encodes several AlkB homologues, including the yet uncharacterized protein AT2G22260, which displays sequence similarity to both ALKBH2 and ALKBH3. We have here characterized protein AT2G22260, by us denoted ALKBH2, as both our functional studies and bioinformatics analysis suggest it to be an orthologue of mammalian ALKBH2. The Arabidopsis ALKBH2 protein displayed in vitro repair activities towards methyl and etheno adducts in DNA, and was able to complement corresponding repair deficiencies of the E. coli alkB mutant. Interestingly, alkbh2 knock-out plants were sensitive to the methylating agent methylmethanesulphonate (MMS), and seedlings from these plants developed abnormally when grown in the presence of MMS. The present study establishes ALKBH2 as an important enzyme for protecting Arabidopsis against methylation damage in DNA, and suggests its homologues in other plants to have a similar function.  相似文献   

9.
It is well known that changes in abiotic conditions such as the concentration of ions, temperature and humidity lead to modulation of polyamine contents in plants. However, little is known about the relevant parts these polyamines play in abiotic stress responses. Here we addressed a specific role of spermine during high salt stress using an Arabidopsis double knockout-mutant plant (acl5/spms) which cannot produce spermine. The mutant showed higher sensitivity to high salt than wild type plants. This phenotype was cured by exogenous spermine but not by the other polyamines putrescine and spermidine, suggesting a strong link between spermine-deficiency and NaCl-hypersensitivity. The mutant was also hypersensitive to high levels of KCl but not to MgCl2 or to high osmoticum. NaCl-hypersensitivity of the mutant was compromised by treatment with Ca2+ channel blockers. Moreover, the mutant showed poor growth on Ca2+-depleted Murashige–Skoog agar media. The data suggest that the absence of spermine causes an imbalance in Ca2+ homeostasis in the mutant plant. Based on the data obtained, we propose a model for a role of spermine in high salt stress responses.  相似文献   

10.
《Current biology : CB》2023,33(4):697-710.e6
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
The present study investigated whether protamine sulfate can be used to improve the efficiency of bovine sperm mediated transgenesis (SMT) by protecting the plasmid pCX-EGFP against nuclease activity. A high proportion (31%) of bovine spermatozoa transfected with the plasmid pCX-EGFP maintain their motility. Using an in vitro assay, protamine sulfate protected the plasmid against degradation by DNase I. However, upon transfecting spermatozoa, the plasmid remained intact regardless of whether it was complexed to protamine sulfate. When in vitro fertilisation (IVF) was undertaken using transfected sperm, 14.6 and 10.2% of blastocysts derived from pCX-EGFP only and pCX-EGFP-protamine transfected sperm, respectively, were PCR positive for the plasmid. In conclusion, using spermatozoa transfected with either pCX-EGFP or pCX-EGFP-protamine complexes, produced PCR positive blastocysts after SMT. However, the use of protamine sulfate does not improve the efficiency of SMT suggesting that factors other than nuclease activity could be limiting.  相似文献   

14.
Jasmonates (JAs) and salicylic acid (SA) are plant hormones that play pivotal roles in the regulation of induced defenses against microbial pathogens and insect herbivores. Their signaling pathways cross-communicate providing the plant with a regulatory potential to finely tune its defense response to the attacker(s) encountered. In Arabidopsis thaliana, SA strongly antagonizes the jasmonic acid (JA) signaling pathway, resulting in the downregulation of a large set of JA-responsive genes, including the marker genes PDF1.2 and VSP2. Induction of JA-responsive marker gene expression by different JA derivatives was equally sensitive to SA-mediated suppression. Activation of genes encoding key enzymes in the JA biosynthesis pathway, such as LOX2, AOS, AOC2, and OPR3 was also repressed by SA, suggesting that the JA biosynthesis pathway may be a target for SA-mediated antagonism. To test this, we made use of the mutant aos/dde2, which is completely blocked in its ability to produce JAs because of a mutation in the ALLENE OXIDE SYNTHASE gene. Mutant aos/dde2 plants did not express the JA-responsive marker genes PDF1.2 or VSP2 in response to infection with the necrotrophic fungus Alternaria brassicicola or the herbivorous insect Pieris rapae. Bypassing JA biosynthesis by exogenous application of methyl jasmonate (MeJA) rescued this JA-responsive phenotype in aos/dde2. Application of SA suppressed MeJA-induced PDF1.2 expression to the same level in the aos/dde2 mutant as in wild-type Col-0 plants, indicating that SA-mediated suppression of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway.  相似文献   

15.
Oxidative stress plays an important role in the progression of many chronic diseases including cardiovascular diseases, diabetes, cancer and neurodegenerative disorders. One such mediator of oxidative stress is peroxynitrite, which is highly toxic to cultured neurons and astrocytes, and has been reported to be involved in the pathogenesis of various types of neuronal diseases. Therefore, searching for natural compounds with peroxynitrite-scavenging activity might be an effective therapy for peroxynitrite-mediated cytotoxicity. Hispidin, a phenolic compound from Phellinus linteus (a medicinal mushroom), has been shown to possess strong antioxidant, anticancer, and antidiabetic properties. However, the astrocyte protective efficacy of hispidin has been not examined. This study was undertaken to investigate whether the astrocyte protective effect of hispidin is associated with inhibition of peroxynitrite-induced DNA damage, a critical event leading to peroxynitrite-mediated cytotoxicity. Our results showed that peroxynitrite can cause DNA damage in φX-174 plasmid DNA and rat primary astrocytes. The presence of hispidin (10-20μg/ml) was found to significantly inhibit peroxynitrite-induced DNA damage and cytotoxicity. EPR spectroscopy demonstrated that the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from peroxynitrite, and that hispidin potently diminished the adduct signal in a concentration-dependent manner. Taken together, these results demonstrate for the first time that hispidin can protect against peroxynitrite-mediated cytotoxicity, DNA damage and hydroxyl radical formation.  相似文献   

16.
The dynamic nature of the eukaryotic actin cytoskeleton is essential for the locomotion of animal cells and the morphogenesis of plant and fungal cells. The F-actin nucleating/branching activity of the Arp2/3 complex is a key function for all of these processes. The SCAR/WAVE family represents a group of Arp2/3 activators that are associated with lamellipodia formation. A protein complex of PIR121, NAP1, ABI, and HSPC300 is required for SCAR regulation by cell signaling pathways, but the exact nature of this interaction is controversial and represents a continually evolving model. The mechanism originally proposed was of a SCAR trans repressing complex supported by evidence from in vitro experiments. This model was reinforced by genetic studies in the Drosophila central nervous system and Dictyostelium, where the knockout of certain SCAR-complex components leads to excessive SCAR-mediated actin polymerization. Conflicting data have steadily accumulated from animal tissue culture experiments suggesting that the complex activates rather than represses in vivo SCAR activity. Recent biochemical evidence supports the SCAR-complex activator model. Here, we show that genetic observations in Arabidopsis are compatible with an activation model and provide one potential mechanism for the regulation of the newly identified Arabidopsis Arp2/3 complex.  相似文献   

17.
The spindle plays a central role in chromosome segregation during mitosis and meiosis. In particular, various kinesins are thought to play crucial roles in spindle structure and function in both mitosis and meiosis of fungi and animals. A group of putative kinesins has been previously identified in Arabidopsis, called ATK1-ATK4 (previously known as KATA-KATD), but their in vivo functions have not been tested with genetic studies. We report here the isolation and characterization of a mutant, atk1-1, which has a defective ATK1 gene. The atk1-1 mutant was identified in a collection of Ds transposon insertion lines by its reduced fertility. Reciprocal crosses between the atk1-1 mutant and wild type showed that only male fertility was reduced, not female fertility. Molecular analyses, including revertant studies, indicated that the Ds insertion in the ATK1 gene was responsible for the fertility defect. Light microscopy revealed that, in the atk1-1 mutant, male meiosis was defective, producing an abnormal number of microspores of variable sizes. Further cytological studies indicated that meiotic chromosome segregation and spindle organization were both abnormal in the mutant. Specifically, the atk1-1 mutant male meiotic cells had spindles that were broad, unfocused and multi-axial at the poles at metaphase I, unlike the typical fusiform bipolar spindle found in the wild-type metaphase I cells. Therefore, the ATK1 gene plays a crucial role in spindle morphogenesis in male Arabidopsis meiosis.  相似文献   

18.
19.
Most plant cells are characterized by the presence of a large central vacuole that in differentiated cells accounts for more than 90% of the total volume. We have undertaken a genetic screen to look for mutants that are affected in the formation of vacuoles in plants. In this study, we report that inactivation of the Arabidopsis gene VACUOLELESS1 (VCL1) blocks vacuole formation and alters the pattern of cell division orientation and cell elongation in the embryo. Consistent with a role in vacuole biogenesis, we show that VCL1 encodes the Arabidopsis ortholog of yeast Vps16p. In contrast to yeast mutants that lack a vacuolar compartment but are viable and morphologically normal, loss of the plant vacuole leads to aberrant morphogenesis and embryonic lethality.  相似文献   

20.
Palmitoyl protein thioesterase (PPT) 1 is an enzyme involved in deacylation of palmitoylated proteins. A deficiency in PPT1 results in a genetic disease, infantile neuronal ceroid lipofuscinosis, associated with massive death of cortical neurons. The role of PPT1 in neuronal survival and apoptosis was studied in human neuroblastoma (LA-N-5) cells overexpressing PPT1. Overexpression of PPT1 was shown both by the 200-350% increase in depalmitoylating activity over basal level (as determined by an in vitro PPT assay) and by western blot analysis of transiently expressed epitope-tagged PPT1. Overexpressed PPT1 showed the same acidic pH optimum (pH 4.0) as the endogenous enzyme, when assayed with a P0-derived octapeptide substrate, and reduced the growth rate by 30%. LA-N-5 cells underwent apoptosis, as evidenced by increased caspase 3-like activity and increased DNA fragmentation, when challenged with either C2-ceramide or a phosphatidylinositol 3-kinase inhibitor (LY294002). Overexpression of PPT1 inhibited this C2-ceramide- or LY294002-mediated activation of caspase-3 by 50%. There was also a concomitant decrease in DNA fragmentation and cell death. Consistent with increased resistance to apoptosis, we found increased phosphorylation of the antiapoptotic protein Akt (protein kinase B) in PPT1-overexpressing cells. p21Ras is known to be dynamically palmitoylated and depalmitoylated and is involved in both growth and cell death. The C2-ceramide-induced membrane association of p21Ras was reduced by 30-50% in PPT1-overexpressing cells compared with control. PPT overexpression also led to reduced membrane association of another palmitoylated protein, GAP-43, a neuron-specific protein. Our studies suggest that protein palmitoylation could be a physiological regulator of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号