首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although several studies have shown that milk protein components have a wide range of biological activities, the potential role of these proteins in the gastrointestinal mucosal defense system is less well elucidated. In this study, we investigated the effect of the major proteins in cow’s milk on gastric mucosal injury by using two acute ulcer models in Wistar rats. Gastric mucosal injury was induced by either intragastric 60% ethanol-HCl or water-immersion restraint stress (23°C, 7 h). Each test milk protein was orally administered 30 min before the induction of gastric injury. Among the major milk proteins, α-lactalbumin (α-LA) is demonstrated to have a marked protective effect against ethanol-induced gastric injury, with the same potency as that of the typical antiulcer agent, Selbex. Whey protein isolate (WPI), which contained 25% α-LA, also protected against gastric injury, while casein showed no effect. Comparative studies on the protective effect of the four major components of WPI, β-lactoglobulin, α-LA, bovine serum albumin and γ-globulins (immunoglobulins), on the basis of their contents in WPI revealed that α-LA was responsible for the protective effect of WPI, being about 4-fold more effective than WPI itself. α-LA showed dose-dependent protection against gastric injury induced by stress as well as ethanol. Pretreatment with indomethacin (10 mg/kg body weight, s.c.), which is a potent inhibitor of endogenous prostaglandin synthesis, resulted in a significant reduction in the protective effect of α-LA. These results indicate that α-LA has marked antiulcer activity as an active component of cow’s milk protein, and suggest that α-LA intake may serve to protect against gastric mucosal injury, in part through endogenous prostaglandin synthesis.  相似文献   

2.
Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA.  相似文献   

3.
Smoking has been associated with NAFLD recently, thus might be a contributing factor for liver disease progression. In this study, we identified the modulative action of α-lipoic acid (α-LA), an organosulphur compound, towards heated tobacco product (HTP) and cigarette smoke extract (CSE)-induced oxidative stress and inflammation in human liver HepG2 cells. The cells were pre-treated with α-LA and exposed to tobacco extracts, and cytotoxicity, oxidative response (SOD, CAT activities and GSH, MDA levels), inflammation (nitrite, IL-6, AhR levels), and liver function (AST/ALT) were assessed. According to the results, a notable increase in oxidative response was observed with CSE, whereas GSH depletion and decreased SOD activity were the key toxicological events induced by HTP (p<0.05). The oxidative and inflammatory responses were ameliorated with α-LA treatment, particularly through GSH restoration and IL-6 modulation. To conclude, these findings on α-LA might contribute to the design of novel adjuvant therapies for people exposed to tobacco smoke.  相似文献   

4.
Parkinson's disease (PD) is a typical neurodegenerative disease. α-Lipoic acid (α-LA) can reduce the incidence of neuropathy. The present study explored the role and mechanism of α-LA in 1-methyl-4-phenylpyridinium (MPP+)-induced cell model of PD. The PD model was induced via treating PC12 cells with MPP+ at different concentrations. MPP+ and α-LA effects on PC12 cells were assessed from cell viability and ferroptosis. Cell viability was detected using the cell counting kit-8 assay. Malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), iron, reactive xygen species (ROS), and glutathione (GSH) concentrations, and ferroptosis-related protein SLC7A11 and GPx4 expressions were used for ferroptosis evaluation. p-PI3K, p-Akt, and nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels were detected. The PI3K/Akt/Nrf2 pathway inhibitors were applied to verify the role of the PI3K/Akt/Nrf2 pathway in α-LA protection against MPP+-induced decreased cell viability and ferroptosis. MPP+-reduced cell viability and induced ferroptosis as presented by increased MDA, 4-HNE, iron, and ROS concentrations, and reduced levels of GSH and ferroptosis marker proteins (SLC7A11 and GPx4). α-LA attenuated MPP+-induced cell viability decline and ferroptosis. The PI3K/Akt/Nrf2 pathway was activated after α-LA treatment. Inhibiting the PI3K/Akt/Nrf2 pathway weakened the protection of α-LA against MPP+ treatment. We highlighted that α-LA alleviated MPP+-induced cell viability decrease and ferroptosis in PC12 cells via activating the PI3K/Akt/Nrf2 pathway.  相似文献   

5.
Oxidative stress represents a major cause of cellular damage and death in the process of osteoporosis. Antimycin A (AMA) has been shown to stimulate mitochondrial superoxide anions and reactive oxygen species (ROS). α-Lipoic acid (α-LA) is a naturally occurring essential coenzyme in mitochondrial multienzyme complexes and acts as a key player in mitochondrial energy production. However, whether α-LA affects the cytotoxicity of AMA in osteoblastic cells is unknown. In this study, we investigated the protective effects of α-LA against AMA-induced cytotoxicity using the MC3T3-E1 osteoblast-like cell line. Our results indicated that α-LA treatment attenuated AMA-induced cytotoxicity and LDH release in a dose-dependent manner. Notably, a significant recovery effect of α-LA on mineralization inhibited by AMA was found. Our results also demonstrated that treatment with 50 μM AMA leads to a reduction of mitochondrial membrane potential (MMP) and the complex IV dysfunction, which was inhibited by pretreatment with α-LA in a dose-dependent manner. In addition, treatment with α-LA significantly reduced the generation of ROS and mitochondrial superoxide production induced by AMA. In addition, our result suggests that PI3K/Akt and CREB pathways are related to the protective effect of α-LA. Importantly, Hoechst 33258 staining results indicated that pretreatment with α-LA prevented AMA-induced apoptosis. Mechanistically, we found that α-LA prevents MC3T3-E1 cells from apoptosis through attenuating cytochrome C release and reducing the level of cleaved caspase-3.  相似文献   

6.
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation.  相似文献   

7.
Overexpression of the Homo sapiens LYR motif containing 1 (LYRM1) causes mitochondrial dysfunction and induces insulin resistance in 3T3-L1 adipocytes. α-Lipoic acid (α-LA), a dithiol compound with antioxidant properties, improves glucose transport and utilization in 3T3-L1 adipocytes. The aim of this study was to investigate the direct effects of α-LA on reactive oxygen species (ROS) production and insulin sensitivity in LYRM1 overexpressing 3T3-L1 adipocytes and to explore the underlying mechanism. Pretreatment with α-LA significantly increased both basal and insulin-stimulated glucose uptake and insulin-stimulated GLUT4 translocation, while intracellular ROS levels in LYRM1 overexpressing 3T3-L1 adipocytes were decreased. These changes were accompanied by a marked upregulation in expression of insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt following treatment with α-LA. These results indicated that α-LA protects 3T3-L1 adipocytes from LYRM1-induced insulin resistance partially via its capacity to restore mitochondrial function and/or increase phosphorylation of IRS-1 and Akt.  相似文献   

8.
9.
Structural investigations of molten globules provide an important contribution towards understanding protein folding pathways. A close similarity between equilibrium molten globule states and kinetic species observed during refolding has been reported for several proteins. However, the experimental conditions, and in particular the pH, under which the equilibrium and kinetic species are studied often differ significantly. For human α-lactalbumin (α-LA), the equilibrium molten globule is most often studied at pH 2, the so-called A-state, while kinetic refolding experiments are performed at neutral pH. α-LA contains a large number of acidic amino acid residues that may influence the properties of the molten globule differently at low and neutral pH. In this study, we investigate the structural preferences of the α-LA molten globule at pH 7 at the level of individual residues using nuclear magnetic resonance spectroscopy and compare these data with previous results obtained at pH 2. We show that differences exist in the conformational ensemble that describes the α-LA molten globule at these two pH values. The molten globule at pH 7 is generally less stable than that at the low pH A-state. Most notable are differences in the stability of structure for the C-helix and the calcium-binding loop that precedes it and differences in the contribution of long-range hydrophobic contacts between the N-terminal and C-terminal regions of the α-domain to the stability of the molten globule. Our results are discussed in the context of previous studies of the α-LA molten globule and can be used to reconcile apparent discrepancies in published data relating to the C-helix. In the light of our results, the low pH A-state may not be the best model for the kinetic molten globule observed during refolding of α-LA. The pH-dependent effects reported here for α-LA may be of relevance in comparisons of equilibrium and kinetic molten globules of other proteins.  相似文献   

10.
Mammalian milk or colostrum contains up to 10% of carbohydrate, of which free lactose usually constitutes more than 80%. Lactose is synthesized within lactating mammary glands from uridine diphosphate galactose (UDP-Gal) and glucose by a transgalactosylation catalysed by a complex of β4-galactosyltransferase and α-lactalbumin (α-LA). α-LA is believed to have evolved from C-type lysozyme. Mammalian milk or colostrum usually contains a variety of oligosaccharides in addition to free lactose. Each oligosaccharide has a lactose unit at its reducing end; this unit acts as a precursor that is essential for its biosynthesis. It is generally believed that milk oligosaccharides act as prebiotics and also as receptor analogues that act as anti-infection factors. We propose the following hypothesis. The proto-lacteal secretions of the primitive mammary glands of the common ancestor of mammals contained fat and protein including lysozyme, but no lactose or oligosaccharides because of the absence of α-LA. When α-LA first appeared as a result of its evolution from lysozyme, its content within the lactating mammary glands was low and lactose was therefore synthesized at a slow rate. Because of the presence of glycosyltransferases, almost all of the nascent lactose was utilized for the biosynthesis of oligosaccharides. The predominant saccharides in the proto-lacteal secretions or primitive milk produced by this common ancestor were therefore oligosaccharides rather than free lactose. Subsequent to this initial period, the oligosaccharides began to serve as anti-infection factors. They were then recruited as a significant energy source for the neonate, which was achieved by an increase in the synthesis of α-LA. This produced a concomitant increase in the concentration of lactose in the milk, and lactose therefore became an important energy source for most eutherians, whereas oligosaccharides continued to serve mainly as anti-microbial agents. Lactose, in addition, began to act as an osmoregulatory molecule, controlling the milk volume. Studies on the chemical structures of the milk oligosaccharides of a variety of mammalian species suggest that human milk or colostrum is unique in that oligosaccharides containing lacto-N-biose I (LNB) (Gal(β1 → 3)GlcNAc, type I) predominate over those containing N-acetyllactosamine (Gal(β1 → 4)GlcNAc, type II), whereas in other species only type II oligosaccharides are found or else they predominate over type I oligosaccharides. It can be hypothesized that this feature may have a selective advantage in that it may promote the growth of beneficial colonic bacteria, Bifidobacteria, in the human infant colon.  相似文献   

11.
Backbone 15N relaxation parameters and 15N–1HN residual dipolar couplings (RDCs) have been measured for a variant of human α-lactalbumin (α-LA) in 4, 6, 8 and 10 M urea. In the α-LA variant, the eight cysteine residues in the protein have been replaced by alanines (all-Ala α-LA). This protein is a partially folded molten globule at pH 2 and has been shown previously to unfold in a stepwise non-cooperative manner on the addition of urea. 15N R2 values in some regions of all-Ala α-LA show significant exchange broadening which is reduced as the urea concentration is increased. Experimental RDC data are compared with RDCs predicted from a statistical coil model and with bulkiness, average area buried upon folding and hydrophobicity profiles in order to identify regions of non-random structure. Residues in the regions corresponding to the B, D and C-terminal 310 helices in native α-LA show R2 values and RDC data consistent with some non-random structural propensities even at high urea concentrations. Indeed, for residues 101–106 the residual structure persists in 10 M urea and the RDC data suggest that this might include the formation of a turn-like structure. The data presented here allow a detailed characterization of the non-cooperative unfolding of all-Ala α-LA at higher concentrations of denaturant and complement previous studies which focused on structural features of the molten globule which is populated at lower concentrations of denaturant.  相似文献   

12.
The proposed similarity of conformation between α-lactalbumin (α-LA) and hen egg-white lysozyme was tested by the comparison of the thermodynamic parameters obtained from the temperature dependence of denaturation. For the denaturing reaction by guanidine hydrochloride, the value of ΔCP for α-LA is almost identical with that for lysozyme, which suggests that the amount of the hydrophobic side chains buried in the interior of the molecule is the same in the native state ; the value of ΔH° and ΔS° for α-LA are also close to those for lysozyme, and the small differences are explicable by the proposed molecular model of α-LA, which implies that the somewhat large difference in ΔG° observed previously between the two proteins does not originate from large conformational differences. These results support the conformational similarity between α-LA and lysozyme as represented by the molecular model. The heat-denatured state of α-LA is also characterized by the parameters and discussed.  相似文献   

13.
A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or “molten globule” state, leading to the idea that partly folded proteins can have “beneficial effects”. The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.  相似文献   

14.
α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF–OA was prepared and its activity and structural changes were compared with α-LA–OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF–OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF–OA was obtained by heat-treatment at pH 8.0 with LD50 of 4.88, 4.95 and 4.62 μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA–OA. Similar to HAMLET, LF–OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF–OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein–OA complexes.  相似文献   

15.
HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.  相似文献   

16.
Some natural proteins induce tumor-selective apoptosis. α-Lactalbumin (α-LA), a milk calcium-binding protein, is converted into an antitumor form, called HAMLET/BAMLET, via partial unfolding and association with oleic acid (OA). Besides triggering multiple cell death mechanisms in tumor cells, HAMLET exhibits bactericidal activity against Streptococcus pneumoniae. The existing methods for preparation of active complexes of α-LA with OA employ neutral pH solutions, which greatly limit water solubility of OA. Therefore these methods suffer from low scalability and/or heterogeneity of the resulting α-LA - OA samples. In this study we present a novel method for preparation of α-LA - OA complexes using alkaline conditions that favor aqueous solubility of OA. The unbound OA is removed by precipitation under acidic conditions. The resulting sample, bLA-OA-45, bears 11 OA molecules and exhibits physico-chemical properties similar to those of BAMLET. Cytotoxic activities of bLA-OA-45 against human epidermoid larynx carcinoma and S. pneumoniae D39 cells are close to those of HAMLET. Treatment of S. pneumoniae with bLA-OA-45 or HAMLET induces depolarization and rupture of the membrane. The cells are markedly rescued from death upon pretreatment with an inhibitor of Ca2+ transport. Hence, the activation mechanisms of S. pneumoniae death are analogous for these two complexes. The developed express method for preparation of active α-LA - OA complex is high-throughput and suited for development of other protein complexes with low-molecular-weight amphiphilic substances possessing valuable cytotoxic properties.  相似文献   

17.
Recent findings on the antioxidant effects of pretreatment with α-lipoic acid (α-LA) on the crush injury of rat sciatic nerve confirm the possible usefulness of α-LA administration in humans with peripheral nerve injuries. We discussed this issue in relation with our recent results in which the combined employment of α-LA and γ-linolenic acid with a rehabilitation program for six weeks reduced sensory symptoms and neuropathic pain in patients with compressive radiculopathy syndrome from disc-nerve root conflict in comparison with patients submitted to rehabilitation program alone for six weeks.  相似文献   

18.
Abstract

Insulin-like growth factor 1 (IGF-1) mediates many of the actions of growth hormone. Overexpression of IGF-1 was reported to have endocrine and paracrine/autocrine effects on somatic growth in transgenic mice. To study the paracrine/autocrine effects of IGF-1 in mammary gland, transgenic mice were produced by pronuclear microinjection of a construct containing a bovine α-lactalbumin (α-LA) promoter linked to an ovine IGF-1 cNDA. This α-LA promoter has previously been shown to direct expression of a human factor VIII gene specifically to the mammary gland of transgenic mice. Three transgenic mouse lines were established as a result of microinjection of 398 embryos. Transgene expression was found in mammary gland at day 1 of lactation from these three lines. Progeny test were carried out by mating two transgenic males/one transgenic female to two nontransgenic females/one nontransgenic male. Mice from one line (line 1225) were all nonexpressors and the other (line 1372) failed to produce offspring. Milk yield was analyzed in the line 1137 that produced 10 mice, of which three were transgenic females and three nontransgenic females. All of the three transgenic females showed integration of the transgene and expressed transgene IGF-1 mRNA in the mammary gland. Milk yields from days 5, 10, and 15 of lactation were significant greater in transgenic expressors than in their nontransgenic littermates. Specifically, there is 17.9% increase in total milk yield from these three days for transgenics compared with nontransgenics. These results demonstrate that local overexpression of IGF-1 in transgenic mice is capable to stimulating milk yield during the first lactation.  相似文献   

19.
β-1,4-Galactosyltransferase-I (GalTI) is unusual among the galactosyltransferase family, which has two isoforms that differ only in the length of their cytoplasmic domains [1]. In this study, we found that both the long and short isoforms of GalTI were expressed in human monocyte-derived dendritic cells (MoDCs), and localized in the cytoplasm near nucleus and cytomembrane. The expression level of GalTI and cellular adhesion ability was increased when DCs continued to mature. We also demonstrated that the cellular adhesion ability of DCs was inhibited by α-lactalbumin (α-LA) via interference with cell surface GalTI function, suggesting that the adhesion ability was positively correlated with the expression of cell surface long GalTI. α-LA also could inhibit DC-T clustering and CD4+ T cell proliferation. Collectively, the data suggests that GalTI might act as a key adhesion molecular participating in T cells-DCs contacts.  相似文献   

20.
Lipid mediators derived from arachidonic acid (AA) are implicated with the occurrence of inflammation and oxidative stress. The current knowledge of AA metabolism focuses on searching for the therapeutic strategy to subvert affected AA metabolism. The aim of our study was to evaluate the potential protective effect of chronic α-lipoic acid (α-LA) supplementation on myocardial inflammation state and oxidative stress in obesity-related cardiovascular dysfunction. The experiment was carried out on male Wistar rats receiving a standard or a high-fat diets with intragastric α-LA administration for 8 weeks. Plasma and myocardial AA concentrations were determined using the gas-liquid chromatography (GLC). The Western blot technique was used to examine the expression of proteins from the inflammatory pathway. The content of selected cytokines, inflammatory mediators, and oxidative stress indicators was detected by the ELISA, colorimetric, and multiplex assay kits. Our results revealed that α-LA caused a notable reduction in AA content, mainly in the phospholipid fraction with a simultaneous diminishment in the synthesis of pro-inflammatory mediators, i.e., prostaglandin E2, leukotrienes B4 and C4 by decreasing the expression of COX-2 and 5-LOX. α-LA also augmented the level of antioxidative SOD2 and GSH and decreased the level of lipid peroxidation products, which improved oxidative system impairment in the left ventricle tissue. The data clearly showed that α-lipoic acid has a significant role in inflammation and oxidative stress development ameliorating the risk of cardiac obesity induced by high-fat feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号