首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations of effective, orally active, and safe antidiabetic metallopharmaceuticals have been carried out during the last two decades. It has been reported that tungsten compounds mimic the action of insulin in intact cell systems. As insulin mimetics, the most investigated tungsten compound was sodium tungstate (ST), rarely investigated was tungstophosphoric acid (WPA), but never alanine complex of tungstophosphoric acid (WPA-A). In this study, the insulin mimetic activity of three different tungsten compounds, ST, WPA, and WPA-A, was evaluated by means of in vitro measurements of the glucose uptake and inhibition of free fatty acids release from epinephrine-treated isolated rat white adipocytes. We investigated the influence of concentration (lower and higher, 0.1 and 1.0 mM, respectively) and solvent: isotonic salt solution—saline (0.9% w/v of NaCl) and dimethyl sulfoxide (DMSO; 2% v/v), on the biological effect of tested compounds. Our experimental data showed that all of the three investigated tungsten compounds possess insulin mimetic activity in vitro on the isolated adipocytes. Influence of concentration and solvents on insulin mimetic effect for the certain tungsten compounds were: WPA was shown effect independently of concentration and solvents; higher concentration and DMSO were significant decreasing insulin mimetic effect of ST; lower concentration and saline led to decreasing effect of WPA-A. Generally, there were no differences in insulin mimetic effect of three tungsten compounds in lower concentration and dissolved in DMSO. When saline was used as solvent, it was needed higher concentration of investigated compounds to accomplish the same effect. In conclusion, our results suggest that low concentration (0.1 mM) of ST, WPA, and WPA-A dissolved in 2% DMSO could be the good candidates for in vivo investigation of their antidiabetic properties.  相似文献   

2.
Obesity and insulin resistance are major risk factors for a number of metabolic disorders, such as type 2 diabetes mellitus. Insulin has been suggested to function as one of the adiposity signals to the brain for modulation of energy balance. Administration of insulin into the brain reduces food intake and body weight, and mice with a genetic deletion of neuronal insulin receptors are hyperphagic and obese. However, insulin is also an anabolic factor; when administered systemically, pharmacological levels of insulin are associated with body weight gain in patients. In this study, we investigated the efficacy and feasibility of small molecule insulin mimetic compounds to regulate key parameters of energy homeostasis. Central intracerebroventricular (i.c.v.) administration of an insulin mimetic resulted in a dose-dependent reduction of food intake and body weight in rats, and altered the expression of hypothalamic genes known to regulate food intake and body weight. Oral administration of a mimetic in a mouse model of high-fat diet-induced obesity reduced body weight gain, adiposity and insulin resistance. Thus, insulin mimetics have a unique advantage over insulin in the control of body weight and hold potential as a novel anti-obesity treatment.  相似文献   

3.
Insulin is a 6 kDa peptide hormone that activates several metabolic processes and cellular growth. Germination studies showed that insulin, vanadyl sulphate (an insulin mimetic compound), tyrphostin (an inhibitor of insulin receptor kinase activity), pinitol (a chiro inositol analogue) and glucose were able to accelerate Canavalia ensiformis (Jack bean) seedling radicle and epicotyl development. Immunofluorescence microscopy analysis showed that proteins binding to insulin, insulin receptor and phosphoserine antibodies are localized in an internal layer of the C. ensiformis seed coat. These results and others previously reported from our laboratory suggest that insulin, insulin receptor and phosphoserine proteins could be components of signalling pathways akin to those present in animals.  相似文献   

4.
The insulin mimetic effect of vanadate inin vitro incubation of erythrocytes with high glucose concentrations showed an increase in sorbitol accumulation and glucose utilization using U-14C-glucose. Aldose reductase inhibitors and vanadate addition reversed the sorbitol accumulation, whereas insulin could not reverse it. Increased glucose utilization was also normalized with vanadium compounds. Increased activity of aldose reductase and sorbitol levels in diabetic animals were also normalized with vanadate treatment.  相似文献   

5.
In a previous report we described the properties of a rabbit anti-insulin receptor antibody (RAIR-IgG) and its effects on the autophosphorylation and kinase activity of human insulin receptors. The present study was carried out on the hepatoma cell line Fao. We tested the mimetic effects of RAIR-IgG on different biological parameters known to be stimulated by insulin, receptor autophosphorylation and kinase activity. RAIR-IgG stimulated the metabolic effects (glucose and amino acid transport) but, unlike insulin, was unable to promote cell proliferation. These data clearly demonstrated the existence of two distinctly controlled pathways in the mediation of the hormonal response. When we investigated the effects of this antibody at the molecular level we found that in a cell-free system RAIR-IgG weakly stimulated receptor autophosphorylation on non-regulatory sites and failed to stimulate tyrosine kinase activity toward exogenous substrates. Accordingly, RAIR-IgG did not stimulate receptor autophosphorylation in 32P-labelled intact cells. Interestingly, under similar conditions RAIR-IgG elicited ribosomal S6 protein phosphorylation, as did insulin. The possibility that RAIR-IgG activated a cryptic tyrosine kinase activity is discussed.  相似文献   

6.
Kinetics of the oxidation of cysteine to cystine by four V(V) oxo diperoxo complexes [VO(O2)2L] possessing insulin mimetic activity, where L = oxalate(oxa), picolinate (pic), bipyridil (bipy), phenanthroline(phen), were performed in water at 10 degrees C by the UV or stopped-flow technique. 51V NMR spectra indicate that oxa undergoes a total ligand dissociation differently from pic, bipy and phen which hold their ligands also in solution. The observed reactivity is deeply affected by the identity of the ligand. The process seems to require coordination of the cysteine to the metal, followed by oxidation within the coordination sphere. In this respect phen and bipy make the coordination of cysteine much easier than oxa and pic. It is suggested, also on the basis of some preliminary observations concerning the oxidation of C6H5CH2SH, that the oxidation process is triggered by an electron transfer step. The rate of this step would be higher for oxa and pic than for phen and bipy. The observation that the oxidative ability of these vanadium peroxo complexes is dependent upon the nature of the ligands might match the analogous finding that their insulin mimetic activity is also modulated by the ligand identities.  相似文献   

7.
Small molecules with insulin mimetic effects and oral availability are of interest for potential substitution of insulin injections in the treatment of diabetes. We have searched databases for compounds capable of mimicking one epitope of the insulin molecule known to be involved in binding to the insulin receptor (IR). This approach identifies thymolphthalein, which is an apparent weak agonist that displaces insulin from its receptor, stimulates auto- and substrate phosphorylation of IR, and potentiates lipogenesis in adipocytes in the presence of submaximal concentrations of insulin. The various effects are observed in the 10(-5)-10(-3) M range of ligand concentration and result in partial insulin activity. Furthermore, analogues of the related phenol red and fluorescein molecules fully displace insulin from the IR ectodomain, however, without insulin agonistic effects. The interactions are further characterized by NMR, UV-vis, and fluorescence spectroscopies. It is shown that both fluorescence and UV-vis changes in the ligand spectra induced by IR fragments occur with Kd values similar to those obtained in the displacement assay. Nevertheless, insulin itself cannot completely abolish binding of the small molecules. Determination of the binding stoichiometry reveals multiple binding sites for ligands of which one overlaps with the insulin binding site on the receptor.  相似文献   

8.
Protein tyrosine phosphatases (PTPs) play a critical role in regulating insulin action in part through dephosphorylation of the active (autophosphorylated) form of the insulin receptor (IRK) and attenuation of its tyrosine kinase activity. Following insulin binding the activated IRK is rapidly internalized into the endosomal apparatus, a major site at which the IRK is dephosphorylated in vivo. Studies in rat liver suggest a complex regulatory process whereby PTPs may act, via selective IRK tyrosine dephosphorylation, to modulate IRK activity in both a positive and negative manner. Use of peroxovanadium (pV) compounds, shown to be powerful PTP inhibitors, has been critical in delineating a close relationship between the IRK and its associated PTP(s) in vivo. Indeed the in vivo administration of pV compounds effected activation of IRK in parallel with an inhibition of IRK-associated PTP activity. This process was accompanied by a lowering of blood glucose levels in both normal and diabetic rats thus implicating the IRK-associated PTP(s) as a suitable target for defining a novel class of insulin mimetic agents. Identification of the physiologically relevant IRK-associated PTP(s) should facilitate the development of drugs suitable for managing diabetes mellitus.  相似文献   

9.
Abe D  Saito T  Sekiya K 《Life sciences》2006,79(11):1027-1033
A novel small molecule compound which exerts insulin mimetic is desirable. Dozens of natural products that have quinone, naphthoquinone, or anthraquinone structure, were tested by a glucose incorporation assay. We found that sennidin A, anthraquinone derivative, stimulated glucose incorporation to near level of maximal insulin-stimulated and sennidin B, a stereoisomer of sennidin A, also stimulated, but the activity of sennidin B was lower than sennidin A. Sennidin A-stimulated glucose incorporation was completely inhibited by wortmannin. Sennidin A did not induce tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), but induced phosphorylation of Akt and glucose transporter 4 (GLUT4) translocation. Our results suggest that in rat adipocytes, sennidin A stimulates glucose incorporation in the phosphatidylinositol 3-kinase (PI3K)- and Akt-dependent, but in the IR/IRS1-independent manner.  相似文献   

10.
为了寻找能够模拟胰岛素生物活性的小肽,以胰岛素多克隆抗体为靶标,筛选噬菌体展示随机C7C环肽库.3轮筛选后,通过ELISA方法挑取与靶分子特异性结合的15个阳性克隆,测序获得两条序列,分析所得序列并合成相应短肽.通过细胞生物学活性检测,小肽CPTSQANSC(ZJ1)能够竞争性的抑制胰岛素与其受体的结合,并对正常小鼠和四氧嘧啶诱导的糖尿病小鼠,都有明显的降血糖作用.上述结果表明,小肽CPTSQANSC具有胰岛素样生物学活性.而小肽CVQPSHSSC(ZJ2)表现出胰岛素拮抗活性,能引起正常小鼠血糖升高.这表明筛选到了能够模拟胰岛素表位的短肽CPTSQANSC,可能为治疗胰岛素依赖性糖尿病提供了新线索.  相似文献   

11.
12.
Circulating insulin inhibits endogenous glucose production. Here we report that bidirectional changes in hypothalamic insulin signaling affect glucose production. The infusion of either insulin or a small-molecule insulin mimetic in the third cerebral ventricle suppressed glucose production independent of circulating levels of insulin and of other glucoregulatory hormones. Conversely, central antagonism of insulin signaling impaired the ability of circulating insulin to inhibit glucose production. Finally, third-cerebral-ventricle administration of inhibitors of ATP-sensitive potassium channels, but not of antagonists of the central melanocortin receptors, also blunted the effect of hyperinsulinemia on glucose production. These results reveal a new site of action of insulin on glucose production and suggest that hypothalamic insulin resistance can contribute to hyperglycemia in type 2 diabetes mellitus.  相似文献   

13.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

14.
Effect of chromium and zinc on insulin signaling in skeletal muscle cells   总被引:2,自引:0,他引:2  
Patients on total parenteral nutrition without Cr supplementation develop symptoms similar to those of diabetes. Zn has been implicated in diabetes because of its antioxidant properties and interaction with insulin. To study the effect of these metal ions on insulin signaling proteins, cultured mouse skeletal muscle cells was used as an in vitro model, as the tissue accounts for more than 80% of insulin-stimulated glucose disposal in the body. In the present study, it has been observed that both Cr and Zn, upon prolonged exposure, could stimulate tyrosine phosphorylation of insulin receptor (IR) even in the absence of insulin. Insulin-mediated IR tyrosine phosphorylation was enhanced by the treatment with both of the metal ions. Both Cr and Zn could phosphorylate insulin receptor substrate-1 (IRS-1). Phosphorylation of IRS-1 induced by metal ions was higher than that induced by insulin. Hence, both Cr and Zn were found to have insulin mimetic activity. Both of the metal ions were also found to potentiate insulin-mediated activation of IRS-1. The basal level of glucose uptake was also increased by prolonged treatment of the cells with the metal ions. The ions could also enhance the insulin-stimulated glucose uptake into the cells. Therefore, both Zn and Cr seem to have a positive effect on insulin signaling leading to glucose uptake.  相似文献   

15.
Single-chain peptides have been recently produced that display either mimetic or antagonistic properties against the insulin and IGF-1 (insulin-like growth factor 1) receptors. We have shown previously that the insulin mimetic peptide S597 leads to significant differences in receptor activation and initiation of downstream signalling cascades despite similar binding affinity and in vivo hypoglycaemic potency. It is still unclear how two ligands can initiate different signalling responses through the IR (insulin receptor). To investigate further how the activation of the IR by insulin and S597 differentially activates post-receptor signalling, we studied the gene expression profile in response to IR activation by either insulin or S597 using microarray technology. We found striking differences between the patterns induced by these two ligands. Most remarkable was that almost half of the genes differentially regulated by insulin and S597 were involved in cell proliferation and growth. Insulin either selectively regulated the expression of these genes or was a more potent regulator. Furthermore, we found that half of the differentially regulated genes interact with the genes involved with the MAPK (mitogen-activated protein kinase) pathway. These findings support our signalling results obtained previously and confirm that the main difference between S597 and insulin stimulation resides in the activation of the MAPK pathway. In conclusion, we show that insulin and S597 acting via the same receptor differentially affect gene expression in cells, resulting in a different mitogenicity of the two ligands, a finding which has critical therapeutic implications.  相似文献   

16.
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.  相似文献   

17.
脂肪因子是由脂肪组织分泌的肽类物质,影响着整个机体的能量代谢,在多种病理过程中起着关键性调节作用。PBEF/Nampt/Visfatin是2005日本学者新发现的一种脂肪因子,由于其具有类胰岛素作用而成为研究热点。目前对该因子属性、作用及作用机制的探讨十分激烈。尽管对PBEF/Nampt/Visfatin的认识尚未明了,但其在代谢性疾病中的作用为该类疾病的病理机制做了重要补充,并且为攻克这类疾病提供了新思路、新靶点。  相似文献   

18.
Herein we report the synthesis of symmetrical C-linked and pseudo-symmetrical O-linked disaccharides structurally related to Araf motifs present in the cell wall of MTB. Their activity in a competition-based arabinosyltransferase assay using [14C]-DPA as the glycosyl donor is also presented. In addition, in vitro inhibitory activity for the disaccharides was determined in a colorimetric broth microdilution assay system against MTB H37Ra and Mycobacterium avium.  相似文献   

19.
Insulin induction of apolipoprotein AI,role of Sp1   总被引:2,自引:0,他引:2  
  相似文献   

20.
Complexes of vanadyl(IV) with 4 monosaccharides and 5 disaccharides were tested in 2 osteoblast-like cell lines (MC3T3E1 and UMR106). Many complexes caused stimulation of UMR106 proliferation (120% basal) in the range of 2.5 to 25 micromol/L. In the nontransformed osteoblasts, some vanadyl-saccharide complexes stimulated the mitogenesis (115% basal) in the same range of concentration. The glucose and sucrose complexes were the most efficient inhibitory agents (65% and 88% of inhibition vs. basal, respectively) for tumoral cells at 100 micromol/L. The galactose and turanose complexes exerted a similar effect in the nontransformed osteoblasts. On the other hand, all the complexes promoted the phosphorylation of the extracellular regulated kinases (ERKs). All together, these results indicate that the stimulation of ERKs is not the only factor that plays a role in the proliferative effects of vanadium derivatives since some compounds were inhibitory proliferating agents. Cell differentiation was evaluated by alkaline phosphatase specific activity and collagen synthesis in UMR106 cells. All the complexes inhibited alkaline phosphatase activity, with galactose complex as the most effective compound (IC50 = 43 micromol/L). The complex with the trehalose TreVO was the most effective agent to stimulate collagen synthesis (142% basal) and glucose consumption (132% basal). A cytosolic tyrosine protein kinase and the kinase-3 of glycogen synthase seem to be involved in the stimulation of glucose consumption by vanadium derivatives. In this series, only TreVO gathered the characteristics of a good insulin mimetic and osteogenic drug. In addition, this complex was a good promoting agent of nontransformed osteoblast proliferation, whereas it inhibited tumoral osteoblasts. GluVO, the complex with glucose, was also more toxic for tumoral than for nontransformed cells. These 2 vanadium derivatives are good potential antitumoral drugs. All the results suggest that the biological effects of vanadium compounds are a complex phenomenon influenced by the complexation, the dose, and the nature of the ligands and the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号