首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations in the Ig locus after replication. When uracil-DNA glycosylase (UNG2) removes uracil, error-prone translesion synthesis over the abasic site causes other mutations in the Ig locus. Together, these processes are central to somatic hypermutation (SHM) that increases immunoglobulin diversity. AID and UNG2 are also essential for generation of strand breaks that initiate class switch recombination (CSR). Patients lacking UNG2 display a hyper-IgM syndrome with recurrent infections, increased IgM, strongly decreased IgG, IgA and IgE and skewed SHM. UNG2 is also involved in innate immune response against retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans.  相似文献   

2.
DNA glycosylases UNG and SMUG1 excise uracil from DNA and belong to the same protein superfamily. Vertebrates contain both SMUG1 and UNG, but their distinct roles in base excision repair (BER) of deaminated cytosine (U:G) are still not fully defined. Here we have examined the ability of human SMUG1 and UNG2 (nuclear UNG) to initiate and coordinate repair of U:G mismatches. When expressed in Escherichia coli cells, human UNG2 initiates complete repair of deaminated cytosine, while SMUG1 inhibits cell proliferation. In vitro, we show that SMUG1 binds tightly to AP-sites and inhibits AP-site cleavage by AP-endonucleases. Furthermore, a specific motif important for the AP-site product binding has been identified. Mutations in this motif increase catalytic turnover due to reduced product binding. In contrast, the highly efficient UNG2 lacks product-binding capacity and stimulates AP-site cleavage by APE1, facilitating the two first steps in BER. In summary, this work reveals that SMUG1 and UNG2 coordinate the initial steps of BER by distinct mechanisms. UNG2 is apparently adapted to rapid and highly coordinated repair of uracil (U:G and U:A) in replicating DNA, while the less efficient SMUG1 may be more important in repair of deaminated cytosine (U:G) in non-replicating chromatin.  相似文献   

3.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

4.
The most common mutations in cancer are C to T transitions, but their origin has remained elusive. Recently, mutational signatures of APOBEC-family cytosine deaminases were identified in many common cancers, suggesting off-target deamination of cytosine to uracil as a common mutagenic mechanism. Here we present evidence from mass spectrometric quantitation of deoxyuridine in DNA that shows significantly higher genomic uracil content in B-cell lymphoma cell lines compared to non-lymphoma cancer cell lines and normal circulating lymphocytes. The genomic uracil levels were highly correlated with AID mRNA and protein expression, but not with expression of other APOBECs. Accordingly, AID knockdown significantly reduced genomic uracil content. B-cells stimulated to express endogenous AID and undergo class switch recombination displayed a several-fold increase in total genomic uracil, indicating that B cells may undergo widespread cytosine deamination after stimulation. In line with this, we found that clustered mutations (kataegis) in lymphoma and chronic lymphocytic leukemia predominantly carry AID-hotspot mutational signatures. Moreover, we observed an inverse correlation of genomic uracil with uracil excision activity and expression of the uracil-DNA glycosylases UNG and SMUG1. In conclusion, AID-induced mutagenic U:G mismatches in DNA may be a fundamental and common cause of mutations in B-cell malignancies.  相似文献   

5.
Deamination of cytosine in DNA results in mutagenic U:G mispairs, whereas incorporation of dUMP leads to U:A pairs that may be genotoxic directly or indirectly. In both cases, uracil is mainly removed by a uracil-DNA glycosylase (UDG) that initiates the base excision repair pathway. The major UDGs are mitochondrial UNG1 and nuclear UNG2 encoded by the UNG-gene, and nuclear SMUG1. TDG and MBD4 remove uracil from special sequence contexts, but their roles remain poorly understood. UNG2 is cell cycle regulated and has a major role in post-replicative removal of incorporated uracils. UNG2 and SMUG1 are both important for prevention of mutations caused by cytosine deamination, and their functions are non-redundant. In addition, SMUG1 has a major role in removal of hydroxymethyl uracil from oxidized thymines. Furthermore, UNG-proteins and SMUG1 may have important functions in removal of oxidized cytosines, e.g. isodialuric acid, alloxan and 5-hydroxyuracil after exposure to ionizing radiation. UNG2 is also essential in the acquired immune response, including somatic hypermutation (SHM) required for antibody affinity maturation and class switch recombination (CSR) mediating new effector functions, e.g. from IgM to IgG. Upon antigen exposure B-lymphocytes express activation induced cytosine deaminase that generates U:G mispairs at the Ig locus. These result in GC to AT transition mutations upon DNA replication and apparently other mutations as well. Some of these may result from the generation of abasic sites and translesion bypass synthesis across such sites. SMUG1 can not complement UNG2 deficiency, probably because it works very inefficiently on single-stranded DNA and is down-regulated in B cells. In humans, UNG-deficiency results in the hyper IgM syndrome characterized by recurrent infections, lymphoid hyperplasia, extremely low IgG, IgA and IgE and elevated IgM. Ung(-/-) mice have a similar phenotype, but in addition display dysregulated cytokine production and develop B cell lymphomas late in life.  相似文献   

6.
DNA-uracil and human pathology   总被引:1,自引:0,他引:1  
Uracil is usually an inappropriate base in DNA, but it is also a normal intermediate during somatic hypermutation (SHM) and class switch recombination (CSR) in adaptive immunity. In addition, uracil is introduced into retroviral DNA by the host as part of a defence mechanism. The sources of uracil in DNA are spontaneous or enzymatic deamination of cytosine (U:G mispairs) and incorporation of dUTP (U:A pairs). Uracil in DNA is removed by a uracil-DNA glycosylase. The major ones are nuclear UNG2 and mitochondrial UNG1 encoded by the UNG-gene, and SMUG1 that also removes oxidized pyrimidines, e.g. 5-hydroxymethyluracil. The other ones are TDG that removes U and T from mismatches, and MBD4 that removes U from CpG contexts. UNG2 is found in replication foci during the S-phase and has a distinct role in repair of U:A pairs, but it is also important in U:G repair, a function shared with SMUG1. SHM is initiated by activation-induced cytosine deaminase (AID), followed by removal of U by UNG2. Humans lacking UNG2 suffer from recurrent infections and lymphoid hyperplasia, and have skewed SHM and defective CSR, resulting in elevated IgM and strongly reduced IgG, IgA and IgE. UNG-defective mice also develop B-cell lymphoma late in life. In the defence against retrovirus, e.g. HIV-1, high concentrations of dUTP in the target cells promotes misincorporation of dUMP-, and host cell APOBEC proteins may promote deamination of cytosine in the viral DNA. This facilitates degradation of viral DNA by UNG2 and AP-endonuclease. However, viral proteins Vif and Vpr counteract this defense by mechanisms that are now being revealed. In conclusion, uracil in DNA is both a mutagenic burden and a tool to modify DNA for diversity or degradation.  相似文献   

7.
MRE11/RAD50/NBS1 (MRN) is a ubiquitous complex that participates in the response to DNA damage and in immunoglobulin (Ig) gene diversification. Ig gene diversification is initiated by deamination of cytosine to uracil, followed by removal of uracil to create an abasic (AP) site. We find that MRE11 associates specifically with rearranged Ig genes in hypermutating B cells, whereas APE1, the major AP-endonuclease in faithful base excision repair, does not. We show that purified, recombinant MRE11/RAD50 can cleave DNA at AP sites and that this AP-lyase activity is conserved from humans to Archaea. MRE11/RAD50 cleaves at AP sites within single-stranded regions of DNA, suggesting that at transcribed Ig genes, cleavage may be coordinated with deamination by AID and deglycosylation by UNG2 to produce single-strand breaks (SSBs) that undergo subsequent mutagenic repair and recombination. These results identify MRN with DNA cleavage in the AID-initiated pathway of Ig gene diversification.  相似文献   

8.
Uracil in DNA is repaired by base excision repair (BER) initiated by a DNA glycosylase, followed by strand incision, trimming of ends, gap filling and ligation. Uracil in DNA comes in two distinct forms; U:A pairs, typically resulting from replication errors, and mutagenic U:G mismatches, arising from cytosine deamination. To identify proteins critical to the rate of repair of these lesions, we quantified overall repair of U:A pairs, U:G mismatches and repair intermediates (abasic sites and nicked abasic sites) in vitro. For this purpose we used circular DNA substrates and nuclear extracts of eight human cell lines with wide variation in the content of BER proteins. We identified the initiating uracil-DNA glycosylase UNG2 as the major overall rate-limiting factor. UNG2 is apparently the sole glycosylase initiating BER of U:A pairs and generally initiated repair of almost 90% of the U:G mismatches. Surprisingly, TDG contributed at least as much as single-strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1) to BER of U:G mismatches. Furthermore, in a cell line that expressed unusually high amounts of TDG, this glycosylase contributed to initiation of as much as approximately 30% of U:G repair. Repair of U:G mismatches was generally faster than that of U:A pairs, which agrees with the known substrate preference of UNG-type glycosylases. Unexpectedly, repair of abasic sites opposite G was also generally faster than when opposite A, and this could not be explained by the properties of the purified APE1 protein. It may rather reflect differences in substrate recognition or repair by different complex(es). Lig III is apparently a minor rate-regulator for U:G repair. APE1, Pol beta, Pol delta, PCNA, XRCC1 and Lig I did not seem to be rate-limiting for overall repair of any of the substrates. These results identify damaged base removal as the major rate-limiting step in BER of uracil in human cells.  相似文献   

9.
Mammals harbour multiple enzymes capable of excising uracil from DNA, although their distinct physiological roles remain uncertain. One of them (UNG) plays a critical role in antibody gene diversification, as UNG deficiency alone is sufficient to perturb the process. Here, we show this unique requirement for UNG does not reflect the fact that other glycosylases are unable to access the U:G lesion. SMUG1, if overexpressed, can partially substitute for UNG to assist antibody diversification as judged by its effect on somatic hypermutation patterns (in both DT40 B cells and mice) as well as a restoration of isotype switching in SMUG-transgenic msh2-/- ung-/- mice. However, SMUG1 plays little natural role in antibody diversification because (i) it is diminishingly expressed during B-cell activation and (ii) even if overexpressed, SMUG1 more appears to favour conventional repair of the uracil lesion than assist diversification. The distinction between UNG and overexpressed SMUG1 regarding the balance between antibody diversification and non-mutagenic repair of the U:G lesion could reflect the association of UNG (but not SMUG1) with sites of DNA replication.  相似文献   

10.
In human cell nuclei, UNG2 is the major uracil-DNA glycosylase initiating DNA base excision repair of uracil. In activated B cells it has an additional role in facilitating mutagenic processing of AID-induced uracil at Ig loci and UNG-deficient patients develop hyper-IgM syndrome characterized by impaired class-switch recombination and disturbed somatic hypermutation. How UNG2 is recruited to either error-free or mutagenic uracil processing remains obscure, but likely involves regulated interactions with other proteins. The UNG2 N-terminal domain contains binding motifs for both proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), but the relative contribution of these interactions to genomic uracil processing is not understood. Interestingly, a heterozygous germline single-nucleotide variant leading to Arg88Cys (R88C) substitution in the RPA-interaction motif of UNG2 has been observed in humans, but with unknown functional relevance. Here we demonstrate that UNG2-R88C protein is expressed from the variant allele in a lymphoblastoid cell line derived from a heterozygous germ line carrier. Enzyme activity as well as localization in replication foci of UNG2-R88C was similar to that of WT. However, binding to RPA was essentially abolished by the R88C substitution, whereas binding to PCNA was unaffected. Moreover, we show that disruption of the PCNA-binding motif impaired recruitment of UNG2 to S-phase replication foci, demonstrating that PCNA is a major factor for recruitment of UNG2 to unperturbed replication forks. Conversely, in cells treated with hydroxyurea, RPA mediated recruitment of UNG2 to stalled replication forks independently of functional PCNA binding. Modulation of PCNA- versus RPA-binding may thus constitute a functional switch for UNG2 in cells subsequent to genotoxic stress and potentially also during the processing of uracil at the immunoglobulin locus in antigen-stimulated B cells.  相似文献   

11.
Nuclear uracil-DNA glycosylase UNG2 has an established role in repair of U/A pairs resulting from misincorporation of dUMP during replication. In antigen-stimulated B-lymphocytes UNG2 removes uracil from U/G mispairs as part of somatic hypermutation and class switch recombination processes. Using antibodies specific for the N-terminal non-catalytic domain of UNG2, we isolated UNG2-associated repair complexes (UNG2-ARC) that carry out short-patch and long-patch base excision repair (BER). These complexes contain proteins required for both types of BER, including UNG2, APE1, POLbeta, POLdelta, XRCC1, PCNA and DNA ligase, the latter detected as activity. Short-patch repair was the predominant mechanism both in extracts and UNG2-ARC from proliferating and less BER-proficient growth-arrested cells. Repair of U/G mispairs and U/A pairs was completely inhibited by neutralizing UNG-antibodies, but whereas added recombinant SMUG1 could partially restore repair of U/G mispairs, it was unable to restore repair of U/A pairs in UNG2-ARC. Neutralizing antibodies to APE1 and POLbeta, and depletion of XRCC1 strongly reduced short-patch BER, and a fraction of long-patch repair was POLbeta dependent. In conclusion, UNG2 is present in preassembled complexes proficient in BER. Furthermore, UNG2 is the major enzyme initiating BER of deaminated cytosine (U/G), and possibly the sole enzyme initiating BER of misincorporated uracil (U/A).  相似文献   

12.
13.
Cytosine deamination is a major promutagenic process, generating G:U mismatches that can cause transition mutations if not repaired. Uracil is also introduced into DNA via nonmutagenic incorporation of dUTP during replication. In bacteria, uracil is excised by uracil-DNA glycosylases (UDG) related to E. coli UNG, and UNG homologs are found in mammals and viruses. Ung knockout mice display no increase in mutation frequency due to a second UDG activity, SMUG1, which is specialized for antimutational uracil excision in mammalian cells. Remarkably, SMUG1 also excises the oxidation-damage product 5-hydroxymethyluracil (HmU), but like UNG is inactive against thymine (5-methyluracil), a chemical substructure of HmU. We have solved the crystal structure of SMUG1 complexed with DNA and base-excision products. This structure indicates a more invasive interaction with dsDNA than observed with other UDGs and reveals an elegant water displacement/replacement mechanism that allows SMUG1 to exclude thymine from its active site while accepting HmU.  相似文献   

14.
15.
Deamination of cytosine (C), 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) occurs spontaneously in mammalian DNA with several hundred deaminations occurring in each cell every day. The resulting potentially mutagenic mispairs of uracil (U), thymine (T) or 5-hydroxymethyluracil (hmU) with guanine (G) are substrates for repair by various DNA glycosylases. Here, we show that targeted inactivation of the mouse Smug1 DNA glycosylase gene is sufficient to ablate nearly all hmU-DNA excision activity as judged by assay of tissue extracts from knockout mice as well as by the resistance of their embryo fibroblasts to 5-hydroxymethyldeoxyuridine toxicity. Inactivation of Smug1 when combined with inactivation of the Ung uracil-DNA glycosylase gene leads to a loss of nearly all detectable uracil excision activity. Thus, SMUG1 is the dominant glycosylase responsible for hmU-excision in mice as well as the major UNG-backup for U-excision. Both Smug1-knockout and Smug1/Ung-double knockout mice breed normally and remain apparently healthy beyond 1 year of age. However, combined deficiency in SMUG1 and UNG exacerbates the cancer predisposition of Msh2(-/-) mice suggesting that when both base excision and mismatch repair pathways are defective, the mutagenic effects of spontaneous cytosine deamination are sufficient to increase cancer incidence but do not preclude mouse development.  相似文献   

16.
Class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes are initiated by the activation-induced cytosine deaminase AID. The resulting uracils in Ig genes were believed to be removed by the uracil glycosylase (UNG) and the resulting abasic sites treated in an error-prone fashion, creating breaks in the Ig switch regions and mutations in the variable regions. A recent report suggests that UNG does not act as a glycosylase in CSR and SHM but rather has unknown activity subsequent to DNA breaks that were created by other mechanisms.  相似文献   

17.
Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells.  相似文献   

18.
Activation-induced cytidine deaminase (AID) initiates antibody gene diversification by creating U:G mismatches. However, AID is not specific for antibody genes; Off-target lesions can activate oncogenes or cause chromosome translocations. Despite its importance in these transactions little is known about how AID finds its targets. We performed an shRNA screen to identify factors required for class switch recombination (CSR) of antibody loci. We found that Spt5, a factor associated with stalled RNA polymerase II (Pol II) and single stranded DNA (ssDNA), is required for CSR. Spt5 interacts with AID, it facilitates association between AID and Pol II, and AID recruitment to its Ig and non-Ig targets. ChIP-seq experiments reveal that Spt5 colocalizes with AID and stalled Pol II. Further, Spt5 accumulation at sites of Pol II stalling is predictive of AID-induced mutation. We propose that AID is targeted to sites of Pol II stalling in part via its association with Spt5.  相似文献   

19.
20.
BACKGROUND: We have previously proposed that deamination of cytosine to uracil at sites within the immunoglobulin loci by activation-induced deaminase (AID) triggers antibody diversification. The pattern of diversification (phase 1 or 2 hypermutation, gene conversion, or switch recombination) is viewed as depending on the mode of resolution of the dU/dG lesion. A major resolution mode involves excising the uracil, an activity that at least four different enzymes can accomplish in the mouse. RESULTS: Deficiency in UNG uracil-DNA glycosylase alone is sufficient to distort the pathway of hypermutation in mice. In ung(-/-) animals, mutations at dC/dG pairs are dramatically shifted toward transitions (95%), indicating that the generation of abasic sites (which can induce transversions) has been inhibited. The pattern of substitutions at dA/dT pairs is unaffected. Class-switch recombination is substantially, but not totally, inhibited. CONCLUSIONS: The results provide strong support for the DNA deamination model for antibody diversification with respect to class-switching as well as hypermutation and, in the context of this model, suggest that (i) UNG is the major mouse DNA glycosylase responsible for processing the programmed dU/dG lesions within the immunoglobulin locus; (ii) the second (dA/dT-biased) phase of mutation is probably triggered by recognition of the initiating dU/dG lesion; and (iii) switch recombination largely proceeds via formation of an abasic site, although (iv) an UNG-independent pathway of switch recombination exists, which could reflect action by another uracil-DNA glycosylase but might alternatively be explained by a distinct pathway of resolution, for example, one involving MSH2/MSH6 recognition of the dU/dG lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号