首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

High order cognitive processing and learning, such as reading, interact with lower-level sensory processing and learning. Previous studies have reported that visual perceptual training enlarges visual span and, consequently, improves reading speed in young and old people with amblyopia. Recently, a visual perceptual training study in Chinese-speaking children with dyslexia found that the visual texture discrimination thresholds of these children in visual perceptual training significantly correlated with their performance in Chinese character recognition, suggesting that deficits in visual perceptual processing/learning might partly underpin the difficulty in reading Chinese.

Methodology/Principal Findings

To further clarify whether visual perceptual training improves the measures of reading performance, eighteen children with dyslexia and eighteen typically developed readers that were age- and IQ-matched completed a series of reading measures before and after visual texture discrimination task (TDT) training. Prior to the TDT training, each group of children was split into two equivalent training and non-training groups in terms of all reading measures, IQ, and TDT. The results revealed that the discrimination threshold SOAs of TDT were significantly higher for the children with dyslexia than for the control children before training. Interestingly, training significantly decreased the discrimination threshold SOAs of TDT for both the typically developed readers and the children with dyslexia. More importantly, the training group with dyslexia exhibited significant enhancement in reading fluency, while the non-training group with dyslexia did not show this improvement. Additional follow-up tests showed that the improvement in reading fluency is a long-lasting effect and could be maintained for up to two months in the training group with dyslexia.

Conclusion/Significance

These results suggest that basic visual perceptual processing/learning and reading ability in Chinese might at least partially rely on overlapping mechanisms.  相似文献   

2.
Recently, Kitagawa and Ichihara (2002) demonstrated that visual adaptation to an expanding or contracting disk produces a cross-modal visually-induced auditory loudness aftereffect (VALAE), which they attributed to cross-correlations of motion in three-dimensional space. Our experiments extend their results by providing evidence that attending selectively to one of two competing visual stimuli of the same saliency produces a cross-modal VALAE that favors the attended stimulus. These cross-modal attentional effects suggest the existence of integrative spatial mechanisms between vision and audition that are affected by attention.  相似文献   

3.
A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children''s reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children.  相似文献   

4.
Developmental dyslexia is a neurological condition that is characterized by severe impairment in reading skill acquisition in people with adequate intelligence and typical schooling [1], [2] and [3]. For English readers, reading impairment is critically associated with a phonological processing disorder [3], [4] and [5], which may co-occur with an orthographic (visual word form) processing deficit [6], but not with a general visual processing dysfunction in most dyslexics [7]. The pathophysiology of dyslexia varies across languages [8]: for instance, unlike English, written Chinese maps visually intricate graphic forms (characters) onto meanings; pronunciation of Chinese characters must be rote memorized. This suggests that, in Chinese, a fine-grained visuospatial analysis must be performed to activate characters' phonology and meaning; consequently, disordered phonological processing may commonly co-exist with abnormal visuospatial processing in Chinese dyslexia. To test this hypothesis, we conducted an fMRI experiment in which 12 Chinese dyslexics, shown previously [9] to exhibit a phonological disorder, performed a physical size judgment measuring visuospatial dimensions. Compared with 12 control subjects, the dyslexics showed weaker activations in left intraparietal sulcus (IPS) mediating visuospatial processing. Analyses of individual dyslexics' performances further suggest that developmental dyslexia in Chinese is commonly associated with the co-existence of a visuospatial deficit and a phonological disorder.  相似文献   

5.
People with dyslexia, who face lifelong struggles with reading, exhibit numerous associated low-level sensory deficits including deficits in focal attention. Countering this, studies have shown that struggling readers outperform typical readers in some visual tasks that integrate distributed information across an expanse. Though such abilities would be expected to facilitate scene memory, prior investigations using the contextual cueing paradigm failed to find corresponding advantages in dyslexia. We suggest that these studies were confounded by task-dependent effects exaggerating known focal attention deficits in dyslexia, and that, if natural scenes were used as the context, advantages would emerge. Here, we investigate this hypothesis by comparing college students with histories of severe lifelong reading difficulties (SR) and typical readers (TR) in contexts that vary attention load. We find no differences in contextual-cueing when spatial contexts are letter-like objects, or when contexts are natural scenes. However, the SR group significantly outperforms the TR group when contexts are low-pass filtered natural scenes [F(3, 39) = 3.15, p<.05]. These findings suggest that perception or memory for low spatial frequency components in scenes is enhanced in dyslexia. These findings are important because they suggest strengths for spatial learning in a population otherwise impaired, carrying implications for the education and support of students who face challenges in school.  相似文献   

6.
Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.  相似文献   

7.
A great deal is now known about the effects of spatial attention within individual sensory modalities, especially for vision and audition. However, there has been little previous study of possible cross-modal links in attention. Here, we review recent findings from our own experiments on this topic, which reveal extensive spatial links between the modalities. An irrelevant but salient event presented within touch, audition, or vision, can attract covert spatial attention in the other modalities (with the one exception that visual events do not attract auditory attention when saccades are prevented). By shifting receptors in one modality relative to another, the spatial coordinates of these cross-modal interactions can be examined. For instance, when a hand is placed in a new position, stimulation of it now draws visual attention to a correspondingly different location, although some aspects of attention do not spatially remap in this way. Cross-modal links are also evident in voluntary shifts of attention. When a person strongly expects a target in one modality (e.g. audition) to appear in a particular location, their judgements improve at that location not only for the expected modality but also for other modalities (e.g. vision), even if events in the latter modality are somewhat more likely elsewhere. Finally, some of our experiments suggest that information from different sensory modalities may be integrated preattentively, to produce the multimodal internal spatial representations in which attention can be directed. Such preattentive cross-modal integration can, in some cases, produce helpful illusions that increase the efficiency of selective attention in complex scenes.  相似文献   

8.
Acquired dyslexia offers a unique window on to the nature of the cognitive and neural architecture supporting skilled reading. This paper provides an integrative overview of recent empirical and computational work on acquired dyslexia within the context of the primary systems framework as implemented in connectionist neuropsychological models. This view proposes that damage to general visual, phonological or semantic processing abilities are the root causes of different forms of acquired dyslexia. Recent case-series behavioural evidence concerning pure alexia, phonological dyslexia and surface dyslexia that supports this perspective is presented. Lesion simulations of these findings within connectionist models of reading demonstrate the viability of this approach. The commitment of such models to learnt representations allows them to capture key aspects of performance in each type of acquired dyslexia, particularly the associated non-reading deficits, the role of relearning and the influence of individual differences in the premorbid state of the reading system. Identification of these factors not only advances our understanding of acquired dyslexia and the mechanisms of normal reading but they are also relevant to the complex interactions underpinning developmental reading disorders.  相似文献   

9.
Stimuli from different sensory modalities are thought to be processed initially in distinct unisensory brain areas prior to convergence in multisensory areas. However, signals in one modality can influence the processing of signals from other modalities and recent studies suggest this cross-modal influence may occur early on, even in ‘unisensory’ areas. Some recent psychophysical studies have shown specific cross-modal effects between touch and vision during binocular rivalry, but these cannot completely rule out a response bias. To test for genuine cross-modal integration of haptic and visual signals, we investigated whether congruent haptic input could influence visual contrast sensitivity compared to incongruent haptic input in three psychophysical experiments using a two-interval, two-alternative forced-choice method to eliminate response bias. The initial experiment demonstrated that contrast thresholds for a visual grating were lower when exploring a haptic grating that shared the same orientation compared to an orthogonal orientation. Two subsequent experiments mapped the orientation and spatial frequency tunings for the congruent haptic facilitation of vision, finding a clear orientation tuning effect but not a spatial frequency tuning. In addition to an increased contrast sensitivity for iso-oriented visual-haptic gratings, we found a significant loss of sensitivity for orthogonally oriented visual-haptic gratings. We conclude that the tactile influence on vision is a result of a tactile input to orientation-tuned visual areas.  相似文献   

10.
The acquisition of letter-speech sound associations is one of the basic requirements for fluent reading acquisition and its failure may contribute to reading difficulties in developmental dyslexia. Here we investigated event-related potential (ERP) measures of letter-speech sound integration in 9-year-old typical and dyslexic readers and specifically test their relation to individual differences in reading fluency. We employed an audiovisual oddball paradigm in typical readers (n = 20), dysfluent (n = 18) and severely dysfluent (n = 18) dyslexic children. In one auditory and two audiovisual conditions the Dutch spoken vowels/a/and/o/were presented as standard and deviant stimuli. In audiovisual blocks, the letter ‘a’ was presented either simultaneously (AV0), or 200 ms before (AV200) vowel sound onset. Across the three children groups, vowel deviancy in auditory blocks elicited comparable mismatch negativity (MMN) and late negativity (LN) responses. In typical readers, both audiovisual conditions (AV0 and AV200) led to enhanced MMN and LN amplitudes. In both dyslexic groups, the audiovisual LN effects were mildly reduced. Most interestingly, individual differences in reading fluency were correlated with MMN latency in the AV0 condition. A further analysis revealed that this effect was driven by a short-lived MMN effect encompassing only the N1 window in severely dysfluent dyslexics versus a longer MMN effect encompassing both the N1 and P2 windows in the other two groups. Our results confirm and extend previous findings in dyslexic children by demonstrating a deficient pattern of letter-speech sound integration depending on the level of reading dysfluency. These findings underscore the importance of considering individual differences across the entire spectrum of reading skills in addition to group differences between typical and dyslexic readers.  相似文献   

11.
The article aims to test the hypothesis that audiovisual integration can improve spatial hearing in monaural conditions when interaural difference cues are not available. We trained one group of subjects with an audiovisual task, where a flash was presented in parallel with the sound and another group in an auditory task, where only sound from different spatial locations was presented. To check whether the observed audiovisual effect was similar to feedback, the third group was trained using the visual feedback paradigm. Training sessions were administered once per day, for 5 days. The performance level in each group was compared for auditory only stimulation on the first and the last day of practice. Improvement after audiovisual training was several times higher than after auditory practice. The group trained with visual feedback demonstrated a different effect of training with the improvement smaller than the group with audiovisual training. We conclude that cross-modal facilitation is highly important to improve spatial hearing in monaural conditions and may be applied to the rehabilitation of patients with unilateral deafness and after unilateral cochlear implantation.  相似文献   

12.
Children with developmental dyslexia show reading impairment compared to their peers, despite being matched on IQ, socio-economic background, and educational opportunities. The neurological and cognitive basis of dyslexia remains a highly debated topic. Proponents of the magnocellular theory, which postulates abnormalities in the M-stream of the visual pathway cause developmental dyslexia, claim that children with dyslexia have deficient binocular coordination, and this is the underlying cause of developmental dyslexia. We measured binocular coordination during reading and a non-linguistic scanning task in three participant groups: adults, typically developing children, and children with dyslexia. A significant increase in fixation disparity was observed for dyslexic children solely when reading. Our study casts serious doubts on the claims of the magnocellular theory. The exclusivity of increased fixation disparity in dyslexics during reading might be a result of the allocation of inadequate attentional and/or cognitive resources to the reading process, or suboptimal linguistic processing per se.  相似文献   

13.
This paper presents the first reading data in Croatian collected with an eye-tracking device. The eye-tracking method allows for research into two crucial levels underlying reading: the visual and the cognitive. The aim of this paper is to show the differences in eye movements in children with dyslexia using the principles of cognitive-control view. Despite the well-known definitions and vast literature on dyslexia, the neural basis of dyslexia varies greatly on the individual level. The three children studied in this paper were tested behaviorally using set of language tests for language behavior assessment on all language levels: phonology, morphology, syntax, lexicon and pragmatics. Two children had low scores on most language tests, and all three children had poor reading and writing level. Each of the children had to read two texts silently while their eye movements were recorded by means of an infrared eye-tracking system. We analyzed the number, position, and duration of fixations and the number and position of regressive (or back) saccades. Our results show intergroup differences (between a typically developing child and the three children with dyslexia), and intragroup differences (among all three children with dyslexia). The great number of fixations, longer duration of fixations, and great number of regression saccades are the main features that differentiate the children with dyslexia form the typically developing child. The only difference found between language and visual subtypes of dyslexia was a shorter duration of fixations for the child with a visual processing disorder.  相似文献   

14.
Y Mu  XQ Li  B Zhang  JL Du 《Neuron》2012,75(4):688-699
Visual cues often modulate auditory signal processing, leading to improved sound detection. However, the synaptic and circuit mechanism underlying this cross-modal modulation remains poorly understood. Using larval zebrafish, we first established a cross-modal behavioral paradigm in which a preceding flash enhances sound-evoked escape behavior, which is known to be executed through auditory afferents (VIII(th) nerves) and command-like neurons (Mauthner cells). In?vivo recording revealed that the visual enhancement of auditory escape is achieved by increasing sound-evoked Mauthner cell responses. This increase in Mauthner cell responses is accounted for by the increase in the signal-to-noise ratio of sound-evoked VIII(th) nerve spiking and efficacy of VIII(th) nerve-Mauthner cell synapses. Furthermore, the visual enhancement of Mauthner cell response and escape behavior requires light-responsive dopaminergic neurons in the caudal hypothalamus and D1 dopamine receptor activation. Our findings illustrate a cooperative neural mechanism for visual modulation of audiomotor processing that involves dopaminergic neuromodulation.  相似文献   

15.
Brain mechanisms in normal and dyslexic readers   总被引:3,自引:0,他引:3  
Developmental dyslexics, individuals with an unexplained difficulty reading, have been shown to have deficits in phonological processing -- the awareness of the sound structure of words -- and, in some cases, a more fundamental deficit in rapid auditory processing. In addition, dyslexics show a disruption in white matter connectivity between posterior and frontal regions. These results give continued support for a neurobiological etiology of developmental dyslexia. However, more research will be required to determine the possible causal relationships between these neurobiological disruptions and dyslexia.  相似文献   

16.
E Magosso  C Cuppini  M Ursino 《PloS one》2012,7(8):e42503
Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.  相似文献   

17.
Although a genetic component is known to have an important role in the etiology of developmental dyslexia (DD), we are far from understanding the molecular etiopathogenetic pathways. Reduced measures of neurobiological functioning related to reading (dis)ability, i.e. endophenotypes (EPs), are promising targets for gene finding and the elucidation of the underlying mechanisms. In a sample of 100 nuclear families with DD (229 offspring) and 83 unrelated typical readers, we tested whether a set of well‐established, cognitive phenotypes related to DD [i.e. rapid auditory processing (RAP), rapid automatized naming (RAN), multisensory nonspatial attention and visual motion processing] fulfilled the criteria of the EP construct. Visual motion and RAP satisfied all testable criteria (i.e. they are heritable, associate with the disorder, co‐segregate with the disorder within a family and represent reproducible measures) and are therefore solid EPs of DD. Multisensory nonspatial attention satisfied three of four criteria (i.e. it associates with the disorder, co‐segregates with the disorder within a family and represents a reproducible measure) and is therefore a potential EP for DD. Rapid automatized naming is heritable but does not meet other criteria of the EP construct. We provide the first evidence of a methodologically and statistically sound approach for identifying EPs for DD to be exploited as a solid alternative basis to clinical phenotypes in neuroscience.  相似文献   

18.
Event-related potentials (ERPs) were measured in 15 normal young subjects (18—22 years old) using the "cross-modal and delayed response" paradigm, which is able to improve inattention purity. The stimuli consisted of written and spoken single Chinese characters. The presentation probability of standard stimuli was 82.5% and that of deviant stimuli was 17.5%. The attention components were obtained by subtracting the ERPs of inattention condition from those of attention condition. The results of the N1 scalp distribution demonstrated a cross-modal difference. This result is in contrast to studies with non-verbal as well as with English verbal stimuli. This probably reflected the brain mechanism feature of Chinese language processing. The processing location of attention was varied along with verbal/non-verbal stimuli, auditory/visual modalities and standard/deviant stimuli, and thus it has plasticity. The early attention effects occurred before the exogenous components, and thus provided evidence support  相似文献   

19.
Visual function, fatty acids and dyslexia   总被引:1,自引:0,他引:1  
There is mounting evidence that developmental dyslexia is a neurodevelopmental disorder which involves abnormalities of fatty acid metabolism, particularly with respect to certain long-chain highly unsaturated fatty acids (HUFAs). Psychophysical evidence also strongly suggests that dyslexics may have visual deficits as well as phonological problems. Specifically, these visual deficits appear to be related to the magnocellular pathway, which is specialized for processing fast, rapidly-changing information about the visual scene. It remains unclear how these two aspects of dyslexia - fatty acid processing and visual magnocellular function - could be related. We propose some hypotheses - necessarily speculative, given the paucity of biochemical research in this field to date - which address this question.  相似文献   

20.
We tested the hypothesis that the categorical perception deficit of speech sounds in developmental dyslexia is related to phoneme awareness skills, whereas a visual attention (VA) span deficit constitutes an independent deficit. Phoneme awareness tasks, VA span tasks and categorical perception tasks of phoneme identification and discrimination using a d/t voicing continuum were administered to 63 dyslexic children and 63 control children matched on chronological age. Results showed significant differences in categorical perception between the dyslexic and control children. Significant correlations were found between categorical perception skills, phoneme awareness and reading. Although VA span correlated with reading, no significant correlations were found between either categorical perception or phoneme awareness and VA span. Mediation analyses performed on the whole dyslexic sample suggested that the effect of categorical perception on reading might be mediated by phoneme awareness. This relationship was independent of the participants’ VA span abilities. Two groups of dyslexic children with a single phoneme awareness or a single VA span deficit were then identified. The phonologically impaired group showed lower categorical perception skills than the control group but categorical perception was similar in the VA span impaired dyslexic and control children. The overall findings suggest that the link between categorical perception, phoneme awareness and reading is independent from VA span skills. These findings provide new insights on the heterogeneity of developmental dyslexia. They suggest that phonological processes and VA span independently affect reading acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号