首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Metagenomics is a powerful tool for mining the genetic repositories from environmental microorganisms. Bacteria associated with marine sponges (phylum Porifera) are rich sources of biologically active natural products. However, to date, few compounds are discovered from the sponge metagenomic libraries, and the main reason might be the difficulties in recovery of high molecular weight (HMW) DNA from sponge symbionts to construct large insert libraries. Here, we describe a method to recover HMW bacterial DNA from diverse sponges with high quality for bacterial artificial chromosome (BAC) library construction. Microorganisms concentrated from sponges by differential centrifugation were embedded in agarose plugs to lyse out the HMW DNA for recovery. DNA fragments over 436 kb size were recovered from three different types of sponges, Halichondria sp., Haliclona sp., and Xestospongia sp. To evaluate the recovered DNA quality, the diversity of bacterial DNA comprised in the HMW DNA derived from sponge Halichondria sp. was analyzed, and this HMW DNA sample was also cloned into a shuttle BAC vector between Escherichia coli and Streptomyces sp. The results showed that more than five types of bacterial DNA, i.e., Proteobacteria, Nitrospirae, Cyanobacteria, Planctomycetes, and unidentified bacteria, had been recovered by this method, and an average 100 kb size insert DNA in a constructed BAC library demonstrated that the recovered HMW DNA is suitable for metagenomic library construction.  相似文献   

2.
Marine sponges harbouring uncultured symbiotic bacteria are important sources of biologically active compounds. Since they would be interesting resources to explore unknown functional genes by means of a metagenomic approach, we constructed a metagenomic library of the Japanese marine sponge Discodermia calyx. The functional screening afforded the two clones producing porphyrins as red pigments. The isolation and structural elucidation of the red pigments revealed that the major red pigment was Zn-coproporphyrin III. The sequence data of the clones identified genes encoding glutamyl-tRNA reductase along with other ORFs related to porphyrin biosynthesis.  相似文献   

3.
Collagen is an important, extracellular structural protein for metazoans and provides a rich nutrient source for bacteria that possess collagen-degrading enzymes. In a symbiotic host system, collagen degradation could benefit the bacteria, but would be harmful for the eukaryotic host. Using a polyphasic approach, we investigated the presence of collagenolytic activity in the bacterial community hosted by the marine sponge Cymbastela concentrica. Functional screening for collagenase activity using metagenomic library clones (227 Mbp) and cultured isolates of sponge's bacterial community, as well as bioinformatic analysis of metagenomic shotgun-sequencing data (106,679 predicted genes) were used. The results show that the abundant members of the bacterial community contain very few genes encoding for collagenolytic enzymes, while some low-abundance sponge isolates possess collagenolytic activities. These findings indicate that collagen is not a preferred nutrient source for the majority of the members of the bacterial community associated with healthy C. concentrica, and that some low-abundance bacteria have collagenase activities that have the potential to harm the sponge through tissue degradation.  相似文献   

4.
Separation of bacterial cells from soil is a key step in the construction of metagenomic BAC libraries with large DNA inserts. Our results showed that when combined with sodium pyro-phosphate and homogenization for soil dispersion, sucrose density gradient centrifugation (SDGC) was more effective at separating bacteria from soil than was low speed centrifugation (LSC). More than 70% of the cells, along with some soil colloids, were recovered with one round of centrifugation. A solution of 0.8% NaCl was used to resuspend these cell and soil pellets for purification with nycodenz density gradient centrifugation (NDGC). After purification, more than 30% of the bacterial cells in the primary soil were extracted. This procedure effectively removed soil contamination and yielded sufficient cells for high molecular weight (HMW) DNA isolation. Ribosomal intergenic spacer analysis (RISA) showed that the microbial community structure of the extracted cells was similar to that of the primary soil, suggesting that this extraction procedure did not significantly change the the soil bacteria community structure. HMW DNA was isolated from bacterial cells extracted from red soil for metagenomic BAC library construction. This library contained DNA inserts of more than 200 Mb with an average size of 75 kb.  相似文献   

5.
采用海绵组织离散、细胞分离的方法,对繁茂膜海绵细胞进行纯化、胞内微生物DNA提取,构建了繁茂膜海绵细胞内微生物的16SrDNA克隆,对其遗传多样性进行了分析,发现海绵细胞内微生物16SrDNA序列主要归类于紫硫细菌门(Proteobacteria)中的α-亚门、γ-亚门和浮霉菌门(Planctomycetes)等类群。与研磨直接提取海绵组织DNA所得海绵组织中总微生物多样性相比,海绵细胞内存在丰富的浮霉菌(23%),说明浮霉菌主要存在于海绵细胞胞内。  相似文献   

6.
Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton.  相似文献   

7.
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo‐) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro‐) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high‐throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome‐scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.  相似文献   

8.
New indole–porphyrin hybrid molecules were isolated from Escherichia coli harboring metagenomic DNA from the Japanese marine sponge Discodermia calyx. The indole was appended to the reactive vinyl substituent of the harderoporphyrin chromophore, encoded by the insert DNA. Thus, the chimeric pathway between the heterologously expressed porphyrins and the endogenous indole generated new indole-conjugated chiral porphyrins in E. coli.  相似文献   

9.
The functional metagenomic screening of the microbial communities associated with a temperate marine sponge and a green alga identified three novel hydrolytic enzymes with antibacterial activities. The results suggest that uncultured alpha- and gammaproteobacteria contain new classes of proteins that may be a source of antibacterial agents.  相似文献   

10.
Sugiyama N  Konoki K  Tachibana K 《Biochemistry》2007,46(40):11410-11420
Okadaic acid, first isolated from the marine sponge Halichondria okadai, is a potent inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A, respectively). Photoaffinity labeling experiments previously performed with biotinylated photoreactive okadaic acid revealed the presence of okadaic acid binding protein (OABP) in the crude extract of H. okadai. In this article, OABP1 and OABP2 were purified from H. okadai as guided by the binding affinity of [27-3H]okadaic acid. OABP1 has an approximate molecular mass of 37 kDa in SDS-PAGE analysis. Edman degradation followed by molecular cloning and sequencing identified OABP1 as being 88% identical to the rabbit PP2Abeta catalytic subunit. On the other hand, HPLC analysis revealed that OABP2 consists of three 22 kDa proteins (OABP2.1, OABP2.2, and OABP2.3). Electrospray ionization mass spectrometry indicated that OABP2.1 and OABP2.2 form a complex with okadaic acid. The complete amino acid sequence of OABP2, determined by Edman degradation and molecular cloning, showed that OABP2.1 is 96% identical to OABP2.2 and 66% identical to OABP2.3, while being very slightly homologous to any protein phosphatases known to date. OABP2 did not exhibit phosphatase activity, though it bound to okadaic acid with a Kd of 0.97 nM. Furthermore, OABP2 was not detected in the sponge Halichondria japonica or the dinoflagellate Prorocentrum lima. We thus speculated that OABP2 might be involved in detoxifying okadaic acid.  相似文献   

11.
Understanding of the ecological roles and evolutionary histories of marine bacterial taxa can be complicated by mismatches in genome content between wild populations and their better-studied cultured relatives. We used computed patterns of non-synonymous (amino acid-altering) nucleotide diversity in marine metagenomic data to provide high-confidence identification of DNA fragments from uncultivated members of the Roseobacter clade, an abundant taxon of heterotrophic marine bacterioplankton in the world's oceans. Differences in gene stoichiometry in the Global Ocean Survey metagenomic data set compared with 39 sequenced isolates indicated that natural Roseobacter populations differ systematically in several genomic attributes from their cultured representatives, including fewer genes for signal transduction and cell surface modifications but more genes for Sec-like protein secretion systems, anaplerotic CO(2) incorporation, and phosphorus and sulfate uptake. Several of these trends match well with characteristics previously identified as distinguishing r- versus K-selected ecological strategies in bacteria, suggesting that the r-strategist model assigned to cultured roseobacters may be less applicable to their free-living oceanic counterparts. The metagenomic Roseobacter DNA fragments revealed several traits with evolutionary histories suggestive of horizontal gene transfer from other marine bacterioplankton taxa or viruses, including pyrophosphatases and glycosylation proteins.  相似文献   

12.
Thomas Hochmuth  Jörn Piel 《Phytochemistry》2009,70(15-16):1841-1849
Marine sponges are an unusually rich source of bioactive natural products with clinical potential. They also often harbor rich communities of symbiotic bacteria that have often been suspected as the true producers of sponge-derived compounds. To date, these bacteria can in most cases not be cultivated, but culture-independent methods, such as isolating and analyzing biosynthetic gene clusters using metagenomic strategies, have recently provided first insights into their chemical potential. This review summarizes recent work of our laboratory on the study of polyketide synthases (PKSs). These studies revealed two evolutionarily distinct, unusual PKS types that are commonly found in sponge metagenomes and were shown to be of bacterial origin. One, the sup PKS, dominates sponge metagenomic DNA libraries, occurs widespread in bacteriosponges and is to date exclusively known from such animals. Data suggest that it is a type of synthase that generates methyl-branched fatty acids, which are commonly present in sponges. The other PKS type, termed trans-acyltransferase (AT) PKS, is responsible for the biosynthesis of complex, bioactive polyketides, such as the onnamides, and also occurs in free-living bacteria. The diversity of PKS genes present in a single sponge metagenome can be enormous. However, the phylogenetic approaches outlined in this review can provide valuable insights into the PKS function and structures of polyketides and can assist in the targeted isolation of gene clusters.  相似文献   

13.
Sponges (Porifera), as the best known source of bioactive marine natural products in metazoans, play a significant role in marine drug discovery and development. As sessile filter-feeding animals, a considerable portion of the sponge biomass can be made of endosymbiotic and associated microorganisms. Understanding the cellular origin of targeted bioactive compounds from sponges is therefore important not only for providing chemotaxonomic information but also for defining the bioactive production strategy in terms of sponge aquaculture, cell culture, or fermentation of associated bacteria. The two alkaloids debromohymenialdisine (DBH) and hymenialdisine (HD), which are cyclin-dependent kinase inhibitors with pharmacological activities for treating osteoarthritis and Alzheimer's disease, have been isolated from the sponge Axinella sp. In this study, the cellular localization of these two alkaloids was determined through the quantification of these alkaloids in different cell fractions by high-performance liquid chromatography (HPLC). First, using a differential centrifugation method, the dissociated cells were separated into different groups according to their sizes. The two bioactive alkaloids were mainly found in sponge cells obtained from low-speed centrifugation. Further cell purifications were accomplished by a newly developed multi-step protocol. Four enriched cell fractions (C1, C2, C3, and C4) were obtained and subjected to light and transmission electron microscopy, cytochemical staining, and HPLC quantification. Compared to the low concentrations in other cell fractions, DBH and HD accounted for 10.9% and 6.1%, respectively, of dry weight in the C1 fraction. Using the morphological characteristics and cytochemical staining results, cells in the C1 fraction were speculated to be spherulous cells. This result shows that DBH and HD in Axinella sp. are located in sponge cells and mostly stored in spherulous cells.  相似文献   

14.
Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.  相似文献   

15.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the beta- and gamma-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

16.
H J Yuasa  T Suzuki  M Yazawa 《Gene》2001,279(2):205-212
The troponin C (TnC) superfamily genes generally possess five introns, and the positions where they are inserted are well conserved except for the fourth intron. Based on a structural comparison of TnC genes, we proposed that the common ancestor of TnC or TnC superfamily genes had no intron corresponding to the modern fourth intron, and therefore members of the superfamily have gained the fourth intron independently within each lineage. Here, we cloned calmodulin (CaM, one of the members of the TnC superfamily) cDNAs from two lower marine nonvertebrates, the sea anemone, Metridium senile, belonging to the Cnidaria, and the sponge, Halichondria okadai, belonging to the Porifera, and also determined their genomic organization. Chordate CaM genes generally possess five introns, but neither sea anemone nor sponge CaM has anything corresponding to the fourth intron of chordate CaMs, suggesting that the early metazoan CaM must have had only four introns. The modern fourth intron of chordate CaMs was acquired within the chordate lineage after nonvertebrate/chordate divergence. This notion concurs with our proposal explaining the evolution of the TnC superfamily genes.  相似文献   

17.
Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “Micromonospora–Saccharomonospora–Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.  相似文献   

18.
We developed a simple technique for the high-yield extraction of purified DNA from mixed populations of natural planktonic marine microbes (primarily bacteria). This is a necessary step for several molecular biological approaches to the study of microbial communities in nature. The microorganisms from near-shore marine and brackish water samples, ranging in volume from 8 to 40 liters, were collected on 0.22-mum-pore-size fluorocarbon-based filters, after prefiltration through glass fiber filters, to remove most of the eucaryotes. DNA was extracted directly from the filters in 1% sodium dodecyl sulfate that was heated to 95 to 100 degrees C for 1.5 to 2 min. This procedure lysed essentially all the bacteria and did not significantly denature the DNA. The DNA was purified by phenol extraction, and precautions were taken to minimize shearing. Agarose gel electrophoresis showed that most of the final preparation had a large molecular size (>23 kilobase pairs). The DNA was sufficiently pure to allow complete digestion by the restriction endonuclease Sau3AI and ligation to vector DNA. In a sample in which the extracted DNA was quantified by binding to the dye Hoechst H33258, DNA was quantitatively extracted, and 45% of the initially extracted DNA was recovered after purification. Final yields were a few micrograms of DNA per liter of seawater and were roughly 25 to 50% of the total bacterial DNA in the sample. Alternatives to the initial harvest by filtration method, including continuous-flow centrifugation and thin-channel or hollow-fiber concentration followed by centrifugation, were less efficient than filtration in terms of both time and yield, largely because of the difficulty of centrifuging the very small bacteria typical of marine plankton. These methods were judged to be less appropriate for studies of natural populations as they impose a strong selection for the larger bacteria.  相似文献   

19.
Quantitatively, methanesulfonate (MSA) is a very relevant compound in the global biogeochemical sulfur cycle. Its utilization by bacteria as a source of carbon and energy has been described and a specific enzyme, methanesulfonate monooxygenase (MSAMO), has been found to perform the first catabolic step of its oxidation. Other proteins seemingly involved in the import of MSA into bacterial cells have been reported. In this study, we obtained novel sequences of genes msmA and msmE from marine, estuary and soil MSA-degraders (encoding the large subunit of the MSAMO enzyme and the periplasmic component of the import system, respectively). We also obtained whole-genome sequences of two novel marine Filomicrobium strains, Y and W, and annotated two full msm operons in these genomes. Furthermore, msmA and msmE sequences were amplified from North Atlantic seawater and analyzed. Good conservation of the MsmA deduced protein sequence was observed in both cultured strains and metagenomic clones. A long spacer sequence in the Rieske-type [2Fe-2S] cluster-binding motif within MsmA was found to be conserved in all instances, supporting the hypothesis that this feature is specific to the large (α) subunit of the MSAMO enzyme. The msmE gene was more difficult to amplify, from both cultivated isolates and marine metagenomic DNA. However, 3 novel msmE sequences were obtained from isolated strains and one directly from seawater. With both genes, our results combined with previous metagenomic analyses seem to imply that moderate to high-GC strains are somehow favored during enrichment and isolation of MSA-utilizing bacteria, while the majority of msm genes obtained by cultivation-independent methods have low levels of GC%, which is a clear example of the misrepresentation of natural populations that culturing, more often than not, entails. Nevertheless, the data obtained in this work show that MSA-degrading bacteria are abundant in surface seawater, which suggests ecological relevance for this metabolic group of bacteria.  相似文献   

20.
Genomic structure of the sponge,Halichondria okadai calcyphosine gene   总被引:2,自引:0,他引:2  
Yuasa HJ  Nakatomi A  Suzuki T  Yazawa M 《Gene》2002,298(1):21-27
Calcyphosine is an EF-hand Ca(2+)-binding protein, which was first isolated from the canine thyroid. It is phosphorylated in a cyclic AMP (cAMP)-dependent manner; then it is thought to be implicated in the cross-signaling between the cAMP and calcium-phosphatidylinositol cascades. Here, we isolated the DNA complementary to RNA (cDNA) of an EF-hand Ca(2+)-binding protein from the sponge, Halichondria okadai and determined its genomic structure. The deduced sequence of the sponge Ca(2+)-binding protein showed significant similarity (about 40% identity) with those of mammal calcyphosines, and the intron positions were well conserved between the sponge and human calcyphosine genes. We considered that the isolated cDNA was that of sponge calcyphosine, and that sponge and mammalian calcyphosines evolved from a common ancestor gene. Recent cDNA projects have revealed that a calcyphosine cDNA is also expressed by human, mouse, and the ascidia. These cDNAs have more than 60% identity with sponge calcyphosine and each other, and all are composed of 208 amino acid residues. On the constructed phylogenetic trees, calcyphosines are essentially divided into two groups, types-I and -II calcyphosines. Type-I calcyphosine may be specific to mammals, and type-II is widely distributed among metazoan species. This suggests that type-II calcyphosine is a rather ancient gene with some essential function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号