首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
This article highlights the research work carried out in the production of inulinases from various inulin substrates using strains of bacteria, yeast and fungi. Inulin is one of the numerous polysaccharides of plant origin that contains glucose or fructose. It is used as a substrate in industrial fermentation processes and in food industries due to its relatively cheap and abundant source for the microbiological production of high-fructose syrups, ethanol and acetone–butanol. The various oligosaccharides derived from inulin also find their application in the medical and dietary sector. The inulinase acts on the β-(2,1)-D-fructoside links in inulin releasing D-fructose. Hence, this article illustrates the capability of various microbes in hydrolyzing the carbon at its optimum nutrient concentration and operating condition towards inulinase production.  相似文献   

2.
An extracellular enzyme beta-D-fructosidase was purified from the culture supernatant of Streptococcus mutans Ingbritt and characterized. The molecular weight of the enzyme was 127,000 as determined by SDS-polyacrylamide gel electrophoresis. The enzyme was specific for levan which mainly consists of beta-(2,6)-linked D-fructose and was also able to hydrolyze inulin, sucrose and raffinose at the activities of 13, 9 and 5% of that hydrolyzing levan, respectively. The pH optima for levan, inulin and sucrose were approximately 5.5, 6.0 and 5.0, respectively. The enzyme was optimally reactive at 55 C for levan. The enzyme was inhibited by Fe3+, Hg2+ and Zn2+ and not by either anionic or non-ionic detergents. Paper chromatographic analysis revealed that the enzyme attacked levan by an exo-type mechanism.  相似文献   

3.
5-Ketofructose reductase [D(-)fructose:(NADP+) 5-oxidoreductase] was purified to homogeneity from Erwinia citreus and demonstrated to catalyse the reversible NADPH-dependent reduction of 5-ketofructose (D-threo-2,5-hexodiulose) to D-fructose. The enzyme appeared as a single species upon analyses by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing with an apparent relative molecular mass of 40,000 and an isoelectric point of 4.4. The amino acid composition of the enzyme and the N-terminal sequence of the first 39 residues are described. The steady-state kinetic mechanism was an ordered one with NADPH binding first to the enzyme and then to 5-ketofructose, and the order of product release was D-fructose followed by NADP+. The reversible nature of the reaction offers the possibility of using this enzyme for the determination of D-fructose.  相似文献   

4.
We report a new high-performance liquid chromatography method developed for measuring inulin in plasma and urine using ion moderated partition chromatography and evaporative light-scattering detection. Samples are deproteinized with a zinc acetate and phosphotungstic acid solution and added with melezitose as an internal standard. The chromatographic separation is carried out in 16 min at a flow-rate of 0.6 ml/min using deionized water as the mobile phase. Within-run precision, measured at four different concentrations (0.050 mg/ml, 0.150 mg/ml, 0.300 mg/ml and 1.200 mg/ml), ranges from 1.7 to 3.4% in plasma and from 1.5 to 3.5% in urine. Similarly, between-run precision is in plasma from 2.0 to 4.3% and in urine from 2.0 to 4.4%. Analytical recovery ranges from 97.9 to 100.1% in plasma and from 99.1 to 99.7% in urine, respectively. Detection limit (signal-to-noise ratio=3) is 5 μg/ml both in plasma and urine. The method is simple, sensitive, without interference due to hexoses or drugs commonly taken by patients with renal diseases, and offers the advantage of measuring inulin without previous hydrolysis of the molecule.  相似文献   

5.
A simple, accurate and sensitive high-performance liquid chromatographic method with UV detection was carried out to measure simultaneously plasma and urine concentrations of both p-aminohippuric acid and inulin. Following a simplified acid hydrolysis of the sample, the separation was carried out in 4 min using a C18 reversed-phase column with a flow-rate of 1 ml/min, and monitoring the absorbance at 280 nm. Within the investigated concentration ranges of inulin (0.1–3.2 mg/ml) and p-aminohippuric acid (0.0097–0.3 mg/ml), good linearity (r>0.99) was obtained. Within-run RSD ranged from 2.9 to 6.1% and between-run RSD ranged from 6.4 to 10%. Analytical recoveries were 101–112%, with little differences between plasma and urine samples. The detection limit was 1 μg/ml for all the analytes studied. This method might be ideal for renal function studies where a rapid and reproducible assessment of both renal glomerular filtration rate and blood flow-rate is required.  相似文献   

6.
In this paper we report 8-quinolineboronic acid as a novel type of fluorescent probe for carbohydrates. This boronic acid responds to the binding of a carbohydrate with over 40-fold increases in fluorescence intensity and shows optimal fluorescence change at physiological pH in aqueous solution.  相似文献   

7.
13C-N.m.r. spectroscopy has been used to determine the equilibrium composition of solutions of maltulose and isomaltulose in deuterium oxide. Resonance assignments have been made for maltulose, isomaltulose, sucrose, leucrose, 1-kestose, nystose, inulin, and grass levan. Some earlier assignments for sucrose and grass levan are corrected. The resonances of the D-glucopyranosyl group in maltulose and isomaltulose have been observed to be sensitive to the ring and anomeric forms of the adjacent D-fructose residue. Spin-lattice relaxation-times (T1) and nuclear Overhauser enhancement factors (n.O.e.f.) for the carbon atoms of the D-fructofuranosyl residues of inulin have been measured, and used in conjunction with deuteration, to aid in resonance and linkage assignments.  相似文献   

8.
Yang F  Liu Q  Bai X  Du Y 《Bioresource technology》2011,102(3):3424-3429
5-Hydroxymethylfurfural (HMF) was produced from monosaccharide (fructose and glucose), polysaccharide (inulin) and the Jerusalem artichoke juice by a simple one-pot reaction including hydrolysis and dehydration using solid acid under mild condition. Hydrated niobium pentoxide (Nb(2)O(5)·nH(2)O(2)) after pretreatment showed high catalytic activities for dehydration of mono- and polysaccharide to HMF at 433 K in water-2-butanol (2:3 v/v) biphasic system, giving high HMF yield of 89% and 54% from fructose and inulin, respectively. The HMF yield was up to 74% and 65% when inulin and Jerusalem artichoke juice were hydrolyzed by exoinulinase. The solid acid made the process environment-friendly and energy-efficient to convert carbohydrates into bio-fuels and platform chemicals.  相似文献   

9.
A new mediated amperometric biosensor for fructose is described. The sensor is based on a commercially available D-fructose dehydrogenase. The enzyme is incorporated in a carbon paste matrix containing Os(bpy)2Cl2 as redox mediator that achieves electron transfer at 0·1 V (versus Ag/AgCl) with maximum apparent current densities of 1·2 mA/cm2. The dependence of the steady-state current on the loading of the mediator and the enzyme, other electrode construction parameters, the operating potential, the pH and the temperature was studied. In the steady-state mode the response current was directly proportional to D-fructose concentration from 0·2 to 20mM with a detection limit of 35 μM (signal-to-noise ratio, S/N, 3). In the flow injection analysis mode the response current was directly proportional to D-fructose concentration from 0·5 to 15 M with a detection limit of 115 μM (S/N 3). The sensor was used for the determination of fructose in food samples in a flow injection system and validated with a commercial enzyme kit.  相似文献   

10.
The glucose transporter 5 (GLUT5)-a specific D-fructose transporter-belongs to a family of facilitating sugar transporters recently enlarged by the human genome sequencing. Prompted by the need to develop specific photolabels of these isoforms, we have studied the interaction of conformationally locked D-fructose and L-sorbose derived 1,3-oxazolidin-2-thiones and 1,3-oxazolidin-2-ones to provide a rational basis for an interaction model. The inhibition properties of the D-fructose transporter GLUT5 by glyco-1,3-oxazolidin-2-thiones and glyco-1,3-oxazolidin-2-ones is now reported. In vitro, the fused-rings systems tested showed an efficient inhibition of GLUT5, thus bringing new insights on the interaction of D-fructose with GLUT5.  相似文献   

11.
Xiang-Ying Sun  Bin Liu 《Luminescence》2005,20(4-5):331-333
In this paper, an internal conversion (IC) fluorescence probe N-(o-boronic acid)benzyl-1-naphthylamine (BBNA) was prepared from 1-naphthylamine and 2-formylbenzeneboronic acid. The fluorescence parameters of BBNA were investigated in a variety of solvents. When BBNA interacted with D-fructose in phosphate buffer solution of 30% MeOH, pH 8.21 (v/v), the fluorescence intensity increased and emission maximum red-shifted slightly with increasing D-fructose concentration. In the presence of D-fructose, the fluorescence quantum yield of BBNA increased with increasing solvent polarity, suggesting that internal conversion (IC) occurred with BBNA. The binding force of BBNA with d-fructose was the strongest, and the stability constant (K) of D-fructose was 99.9 mol/L. Therefore, a selective recognition system based on IC was constructed for D-fructose.  相似文献   

12.
A D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase (Xfp) from the probiotic Bifidobacterium lactis was purified to homogeneity. The specific activity of the purified enzyme with D-fructose 6-phosphate as a substrate is 4.28 Units per mg of enzyme. K(m) values for D-xylulose 5-phosphate and D-fructose 6-phosphate are 45 and 10 mM, respectively. The native enzyme has a molecular mass of 550,000 Da. The subunit size upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (90,000 Da) corresponds with the size (92,529 Da) calculated from the amino acid sequence of the isolated gene (named xfp) encoding 825 amino acids. The xfp gene was identified on the chromosome of B. lactis with the help of degenerated nucleotide probes deduced from the common N-terminal amino acid sequence of both the native and denatured enzyme. Comparison of the deduced amino acid sequence of the cloned gene with sequences in public databases revealed high homologies with hypothetical proteins (26 to 55% identity) in 20 microbial genomes. The amino acid sequence derived from the xfp gene contains typical thiamine diphosphate (ThDP) binding sites reported for other ThDP-dependent enzymes. Two truncated putative genes, pta and guaA, were localized adjacent to xfp on the B. lactis chromosome coding for a phosphotransacetylase and a guanosine monophosphate synthetase homologous to products of genes in Mycobacterium tuberculosis. However, xfp is transcribed in B. lactis as a monocistronic operon. It is the first reported and sequenced gene of a phosphoketolase.  相似文献   

13.
Epimerisation and subsequent functionalization at C-5 of D-fructopyranose derivatives under Mitsunobu and Garegg's conditions provided efficient access to 5-thio-D-fructose (2) as well as to 5-azido-5-deoxy-1,2-O-isopropylidene-beta-D-fructopyranose (19), a known precursor to 2,5-deoxy-2,5-imino-D-mannitol (3). The interaction of 2 with the D-fructose transporter GLUT5, was found to be weaker than that of D-fructose, a result that suggests involvement of the ring oxygen atom in the recognition of D-fructose by GLUT5.  相似文献   

14.
We have examined the specificity and binding-site spatial requirements of the fructose transporter GLUT5. Interaction with a series of fructofuranosides and fructopyranosides suggests that both furanose and pyranose ring forms of D-fructose combine with GLUT5. The epimers of D-fructose all have low affinity for GLUT5 suggesting that the transporter requires all hydroxyls to be in the fructo-configuration. Similarly there is poor tolerance of all allyl derivatives of D-fructose except 6-O-allyl-D-fructofuranose. Therefore, the C-6 position offers the most suitable position for development of affinity probes and labels for exploring GLUT5 biochemistry.  相似文献   

15.
Shen QJ  Jin WJ 《Luminescence》2011,26(6):494-499
The free 3-quinolineboronic acid (3-QBA) with the lowest (n-π*) excited singlet is non- or weakly fluorescent while protonated 3-QBA has the lowest (π-π*) excited singlet state and is highly fluorescent. The hybridization of boronic atom or charge transfer from aromatic ring to boronic acid group plays a secondary role in affecting fluorescence intensity. Binding with carbohydrate at a proper acidity, the hybridization of boron atom changes from sp(2) to sp(3) and the nitrogen atom in the quinoline ring is partially protonated, resulting in large enhancement of fluorescence. Meanwhile, the fluorescent lifetime of 3-QBA produces obvious change by binding with carbohydrates. Quinoline boronic acid is an important water-soluble fluorescence sensor for carbohydrate recognition. Both the remarkable changes in intensity and lifetime of 3-QBA can act as working parameters in recognition of carbohydrates at physiological pH.  相似文献   

16.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

17.
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase.  相似文献   

18.
Prebiotic substances are extracted from various plant materials or enzymatic hydrolysis of different substrates. The production of fructo-oligosaccharide (FOS) and inulo-oligosaccharide (IOS) was performed by applying two substrates, sucrose and inulin; oligosaccharide yields were maximized using central composite design to evaluate the parameters influencing oligosaccharide production. Inulin from Jerusalem artichoke (5–15% w/v), sucrose (50–70% w/v), and inulinase from Aspergillus niger (2–7 U/g) were used as variable parameters for optimization. Based on our results, the application of sucrose and inulin as co-substrates for oligosaccharide production through inulinase hydrolysis and synthesis is viable in comparative to a method using a single substrate. Maximum yields (674.82?mg/g substrate) were obtained with 5.95% of inulin, 59.87% of sucrose, and 5.68 U/g of inulinase, with an incubation period of 9?hr. The use of sucrose and inulin as co-substrates in the reaction simultaneously produced FOS and IOS from sucrose and inulin. Total conversion yield was approximately 67%. Our results support the high value-added production of oligosaccharides using Jerusalem artichoke, which is generally used as a substrate in prebiotics and/or bioethanol production.  相似文献   

19.
Arthrobacter pyridinolis possesses alternative transport systems for D-fructose: a respiration-coupled transport system whereby D-fructose transport occurs with concomitant oxidation of L-malate, and a phosphoenolpyruvate: D-fructose phosphotransferase system. Studies of D-fructose uptake by whole cells in the presence and absence of cyanide demonstrate that respiration-coupled transport is used almost exclusively during the first half of logarithmic growth, after which it accounts for only 15-20% of D-fructose uptake. Phosphotransferase levels are low during log phase, peak during late log, and then slowly decline. In a mutant of A. pyridinolis which requires delta-aminolevulinic acid for growth, the growth rate, cell cytochrome content, and activity of the respiration-coupled transport system increased with increasing concentrations of delta-aminolevulinic acid up to 50 microgram/ml. By contrast, phosphotransferase activity was highest in cells grown on limiting delta-aminolevulinic acid. L-Malate, which stimulates respiration-coupled transport, repressed the phosphotransferase system. The respiratory activity and the ability to release CO2 from internalized d-fructose was consistently low in D-fructose-grown cells. A cyanide-resistant cytochrome, tentatively identified as cytochrome d, appeared in the late exponential phase of growth. Isocitrate lyase activity, required for aerobic growth of this organism, declined markedly during the late exponential phase. Thus the phosphotransferase system is maximally induced, in this obligate aerobe, under conditions of relative anaerobiosis during which metabolism is primarily fermentative.  相似文献   

20.
13C-N.m.r. spectra have been recorded for sucrose, melezitose, levan, inulin, palatinose, and D-fructose. Except for the last, each compound contains a different O-substituted D-fructofuranose residue or group, or β-D-fructofuranosyl residue or group. On the basis of chemical-shift displacements, resulting from O-substitution at specific carbon atoms, resonances can be assigned to the carbon atoms of the β-D-fructofuranosyl residue. Fortuitously, the α-D-glucopyranosyl group present in some of these compounds exhibits resonances that do not obscure the β-D-fructofuranosyl resonances. O-Substitution of the β-D-fructofuranosyl residue causes a downfield displacement of the corresponding, linked-C resonance; however, the other major resonances of this residue are not affected by bulky substituents. Members of a series of levan fractions, the products of partial, acid hydrolysis of Streptoccoccus salivarius levan, were then examined for changes in relative degree of branching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号