首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical composition of 24 wild species differing in relative growth rate   总被引:27,自引:11,他引:16  
The chemical composition of 24 plant species which showed a three-fold range in potential growth rate was investigated. The carbon content of whole plants was lower for fast-growing species than for slow-growing ones. Fast-growing species accumulated more organic N-compounds, organic acids and minerals, whereas slow-growing species accumulated more (hemi)cellulose, insoluble sugars and lignin. No correlations with relative growth rate were found for soluble phenolics, soluble sugars and lipids. The costs to construct 1 g of plant biomass were rather similar for fast- and slow-growing species, both when expressed as C needed for C-skeletons, as glucose to provide ATP and NAD(P)H, and as total glucose costs. Therefore, we conclude that, despite the differences in chemical composition between fast- and slow-growing species, variation in the costs of synthesis of whole plant biomass cannot explain interspecific variation in relative growth rate of herbaceous species.  相似文献   

2.
BACKGROUND AND AIMS: A study is made by computation of the interplay between the pattern formation of growth catalysts on a plant surface and the expansion of the surface to generate organismal shape. Consideration is made of the localization of morphogenetically active regions, and the occurrence within them of symmetry-breaking processes such as branching from an initially dome-shaped tip or meristem. Representation of a changing and growing three-dimensional shape is necessary, as two-dimensional work cannot distinguish, for example, formation of an annulus from dichotomous branching. METHODS: For the formation of patterns of chemical concentrations, the Brusselator reaction-diffusion model is used, applied on a hemispherical shell and generating patterns that initiate as surface spherical harmonics. The initial shape is hemispherical, represented as a mesh of triangles. These are combined into finite elements, each made up of all the triangles surrounding each node. Chemical pattern is converted into shape change by moving nodes outwards according to the concentration of growth catalyst at each, to relieve misfits caused by area increase of the finite element. New triangles are added to restore the refinement of the mesh in rapidly growing regions. KEY RESULTS: The postulated mechanism successfully generates: tip growth (or stalk extension by an apical meristem) to ten times original hemisphere height; tip flattening and resumption of apical advance; and dichotomous branching and higher-order branching to make whorled structures. Control of the branching plane in successive dichotomous branchings is tackled with partial success and clarification of the issues. CONCLUSIONS: The representation of a growing plant surface in computations by an expanding mesh that has no artefacts constraining changes of shape and symmetry has been achieved. It is shown that one type of pattern-forming mechanism, Turing-type reaction-diffusion, acting within a surface to pattern a growth catalyst, can generate some of the most important types of morphogenesis in plant development.  相似文献   

3.
The chronological relationships between stolon formation, stolon tip swelling, tuber initiation, flowering, senescence, growth and resorption of tubers were studied under field conditions in a diploid population of potato with 238 genotypes, the parental clones and seven tetraploid cultivars. Timing of tuber initiation was not closely related to the timing of stolon formation, flowering and duration of the plant cycle. Tuber initiation very often preceded stolon branching. The number and size distribution of tubers were largely influenced by the degree of stolon branching, the length of the stolon swelling period and tuber resorption. The peak production of stolons and swollen stolon tips largely took place within the flowering period, although in most genotypes, some stolon tip swelling took place until the end of the plant cycle. More information on the general temporal relationships between events related to tuber formation and plant development will contribute to a better understanding of the physiological and genetic basis of the processes leading to the production of harvestable tubers.  相似文献   

4.
Modeling of pattern formation in hydra has revealed basic mechanisms that underlie the reproducible generation of complex and self-regulating patterns. Organizing regions can be generated by a local self-enhancing reaction that is coupled with an inhibitory effect of longer range. Such reactions enable pattern formation even in an initially almost homogeneous assembly of cells. A long-ranging feedback of the organizer onto the competence to perform the pattern-forming reaction stabilizes the polar axial pattern during growth and allows for regeneration with preserved polarity. Hypostome formation is assumed to be under the control of two positive feedback loops in which Wnt3 is a common element. In addition to the well-established loop employing beta-catenin, a second cell-local loop is involved, possibly with Brachyury as an additional component. This model accounts for the different expression patterns of beta-catenin and Wnt3. Wnt molecules are proposed to play a dual role, functioning as activators and, after processing, as inhibitors. Since Wnt genes code for complete pattern-forming systems, gene duplication and diversification lead to a family of genes whose expression regions have a precise relation to each other. Tentacle formation is an example of positioning a second pattern-forming system by medium-ranging activation and local exclusion exerted by the primary system. A model for bud formation suggests that a transient pre-bud signal is involved that initiates the formation of the foot of the bud, close to the normal foot, as well as close to the bud tip. Many dynamic regulations, as observed in classical and molecular observations, are reproduced in computer simulations. A case is made that hydra can be regarded as a living fossil, documenting an evolutionary early axis formation before trunk formation and bilaterality were invented. Animated simulations are available in the supplementary information accompanying this paper.  相似文献   

5.
The growth of mycelial fungi is characterized by the highly polarized extension of hyphal tips and the formation of subapical branches, which themselves extend as new tips. In Neurospora crassa, tip growth and branching are crucial elements for this saprophyte in the colonization and utilization of organic substrates. Much research has focused on the mechanism of tip extension, but a cellular model that fully explains the known phenomenology of branching by N. crassa has not been proposed. We described and tested a model in which the formation of a lateral branch in N. crassa was determined by the accumulation of tip-growth vesicles caused by the excess of the rate of supply over the rate of deposition at the apex. If both rates are proportional to metabolic rate, then the model explains the known lack of dependence of branch interval on growth rate. We tested the model by manipulating the tip extension rate, first by shifting temperature in both the wild type and hyperbranching (colonial) mutants and also by observing the behavior of both tipless colonies and colonyless tips. We found that temperature shifts in either direction result in temporary changes in branching. We found that colonyless tips also pass through a temporary transition phase of branching. The tipless colonies produced a cluster of new tips near the point of damage. We also found that branching in colonial mutants is dependent on growth rate. The results of these tests are consistent with a model of branching in which branch initiation is controlled by the dynamics of tip growth while being independent of the actual rate of this growth.  相似文献   

6.
The growth of mycelial fungi is characterized by the highly polarized extension of hyphal tips and the formation of subapical branches, which themselves extend as new tips. In Neurospora crassa, tip growth and branching are crucial elements for this saprophyte in the colonization and utilization of organic substrates. Much research has focused on the mechanism of tip extension, but a cellular model that fully explains the known phenomenology of branching by N. crassa has not been proposed. We described and tested a model in which the formation of a lateral branch in N. crassa was determined by the accumulation of tip-growth vesicles caused by the excess of the rate of supply over the rate of deposition at the apex. If both rates are proportional to metabolic rate, then the model explains the known lack of dependence of branch interval on growth rate. We tested the model by manipulating the tip extension rate, first by shifting temperature in both the wild type and hyperbranching (colonial) mutants and also by observing the behavior of both tipless colonies and colonyless tips. We found that temperature shifts in either direction result in temporary changes in branching. We found that colonyless tips also pass through a temporary transition phase of branching. The tipless colonies produced a cluster of new tips near the point of damage. We also found that branching in colonial mutants is dependent on growth rate. The results of these tests are consistent with a model of branching in which branch initiation is controlled by the dynamics of tip growth while being independent of the actual rate of this growth.  相似文献   

7.
Bacterial communities from the rhizosphere of cucumber were characterized with respect to growth rates and carbon source utilization, in order to develop a selection strategy for biocontrol agents against Pythium aphanidermatum. Rhizosphere samples were collected from different root regions (root tips, the root base, and the intermediate region where lateral roots emerge) and developmental stages (the seedling, vegetative, and generative stage) from plants cultivated on reused rockwool. By colony counts on 1/10 strength TSA on subsequent days after plating, percentages of fast- and slow-growing isolates (i.e., forming visible colonies within 2 days, or after 3 or more days, respectively) were determined for each rhizosphere sample. At all plant developmental stages, root tips had the highest percentages of fast growing isolates, and root bases the lowest. During plant growth, the relative amounts of slowly growing bacteria increased. Community-level carbon source utilization was determined for the different rhizosphere samples with Biolog GN plates. Principal component analysis showed that rhizosphere samples from different developmental stages and root locations had distinct carbon source utilization patterns. Communities from root tips of seedlings showed the highest utilization of several monosaccharides. Communities from tips and intermediate regions of plants in the vegetative stage utilized relatively many amino acids and several organic acids, and in the generative stage, more di- and polysaccharides were used. Root base samples scored low with respect to carbon source utilization, except for some disaccharides. From the different rhizosphere samples, 826 bacteria, randomly collected from 1/10 strength TSA plates, were screened on the utilization of 9 carbon sources. The 9 selected carbon sources were chosen because they are reported to occur in the rhizosphere, to be used by the zoospores of Pythium in the infection process, or appeared to be discriminant in the analysis of community-level carbon source utilization performed in this study. It appeared that monosaccharides (glucose and fucose), amino acids (alanine and asparagine), and organic acids (galacturonic, succinic, and linoleic acid) were used for growth mainly by bacteria from the root tips, and to a lesser extent from the intermediate region, of young plants. Disaccharides were predominantly utilized by isolates from plants in the vegetative stage. Overall, the results indicated that growth rates and carbon source utilization reflect the adaptation of bacteria to the rhizosphere environment. The possibility of using these characteristics to screen for rhizosphere competent biocontrol agents that compete for substrates with P. aphanidermatum is discussed.  相似文献   

8.
In this paper we present a mathematical model for estimating external mycelium growth of arbuscular mycorrhizal fungi and its effect on root uptake of phosphate (P). The model describes P transport in soil and P uptake by both root and fungi on the single root scale. We investigate differences in soil P depletion and overall P influx into a mycorrhizal root by assuming that different spatial regions of mycelia are active in P uptake. When all external hyphae contribute to P uptake, overall uptake is dominated by the fungus and the most effective growth pattern appears to be the one using a high level of anastomosis. The same is true when only the proportion of external hyphae assumed to be active contributes to uptake. When uptake is restricted to the tips, hyphal contribution to overall P uptake is less dominant; the most effective growth pattern appears to be the one characterised by nonlinear branching where branching stops at a given maximal hyphal tip density. Comparison to measured P depletion in the literature suggests that the scenario where active hyphae are contributing to P uptake is likely to fit the data best. These quantitative predictions promote our understanding of the mycorrhizal symbiosis and its role in plant P nutrition.  相似文献   

9.
Are there intrinsic differences in the rates of photosynthesis, shoot- and root-respiration between inherently fast- and slow-growing monocotyledons at high and low nitrogen supply? To analyze this question we grew 5 monocotyledons, widely differing in their inherent relative growth rate at high and low nitrogen supply in a growth room. Nitrate was exponentially added to the plants, enabling us to compare inherent differences in plant characteristics, without any effect of species differences in the ability to take up nutrients. At high nitrogen supply, the fast-growing species from productive habitats had a higher photosynthetic nitrogen use efficiency and rate of root respiration than the slow-growing ones from unproductive habitats. Only minor differences were observed in their rates of photosynthesis and shoot respiration per unit leaf area. At low nitrogen supply, the rates of photosynthesis and shoot- and root respiration decreased for all species, even though there were no longer any differences in these processes between inherently fast- and slow-growing species. The photosynthetic nitrogen use efficiency increased for all species, and no differences were found among species. Differences in the photosynthetic nitrogen use efficiency among species and nitrogen treatments are discussed in terms of the utilization of the photosynthetic apparatus, whereas differences in respiration rate are discussed in terms of the energy demand for growth, maintenance and ion uptake and their related specific respiratory energy costs. It is concluded that the relatively high abundance of slow-growing species compared to fast-growing ones in unproductive habitats is unlikely to be explained by differences in rates of photosynthesis and respiration or in photosynthetic nitrogen use efficiency.  相似文献   

10.
There is limited understanding of the spatial plasticity of conifer root growth in response to inorganic and organic nitrogen (N). In this study, slow-growing amabilis fir and fast-growing Douglas-fir, and slow- and fast-growing seedlots of the latter species were examined for their ability to proliferate roots preferentially in compartments of sand/peat medium enriched in organic and inorganic forms of N. In one experiment, N was supplied as 7.1 or 0.71 mM ammonium, nitrate and ammonium nitrate, and in a second experiment, N was supplied as ammonium or glycine. The seedlings’ ability to compensate for the starvation of a portion of the root system was assessed by measuring biomass of leaves, stems and roots, and foliar N concentration. Both fast- and slow-growing seedlots of Douglas-fir and slow-growing amabilis fir were able to proliferate roots in compartments of soil enriched with inorganic and organic N. In the first experiment, whole plant and root biomass was greatest when N was provided as ammonium followed by nitrate, and in the second experiment, seedling whole and root biomasses did not differ between ammonium and glycine treatments. All seedlings were able to compensate for the starvation of a portion of the root system, thus total plant biomass did not differ between split-root treatments; however, foliar N contents were lower in the 7.1/0.71 mM inorganic N split-root treatments. Foliar N concentrations were also lower in seedlings supplied with glycine.  相似文献   

11.
Nuclear dynamics in root hairs, which depends upon the actin cytoskeleton, appears to be an important factor in root-hair tip growth. Previous evidence suggests that there is an absolute requirement for the nucleus to be a fixed distance from the growing root-hair tip for tip growth to proceed. To test this hypothesis, nuclear dynamics were examined in root-hair cells bearing multiple root hairs. The majority of root-hair cells of transgenic plants overexpressing the ROP2 GTPase (ROP2 OX) bear multiple root hairs. Simultaneous and sustained fast tip growth occurred in multiple root hairs of ROP2 OX, with the continual presence of tip-localized cytoplasm in these growing hairs. Nuclear dynamics were imaged in ROP2 OX by co-expressing a transgene encoding a nuclear localization signal (NLS)-green fluorescent protein (GFP) fusion protein. The nucleus was in continual proximity to one of the growing root-hair tips, whilst the other tip elongated at a similar rate but in the absence of the nucleus from the shank of that root hair. To test whether this phenomenon was an artefact of ROP2 overexpression, nuclear dynamics were examined in wild-type and NLS-GFP transgenic plants. Multiple root hairs on the same cell underwent simultaneous and sustained fast tip growth, with the nucleus lying deep within the shank of only one of these hairs. The nucleus was also moved into the root-hair tip during the severe root-hair tip branching which is characteristic of ROP2 OX transgenic plants. These results suggest that fast tip growth can proceed in some multiple root hairs at extreme distances from the nucleus.  相似文献   

12.
While GDNF signaling through the Ret receptor is critical for kidney development, its specific role in branching morphogenesis of the epithelial ureteric bud (UB) is unclear. Ret expression defines a population of UB "tip cells" distinct from cells of the tubular "trunks," but how these cells contribute to UB growth is unknown. We have used time-lapse mosaic analysis to investigate normal cell fates within the growing UB and the developmental potential of cells lacking Ret. We found that normal tip cells are bipotential, contributing to both tips and trunks. Cells lacking Ret are specifically excluded from the tips, although they contribute to the trunks, revealing that the tips form and expand by GDNF-driven cell proliferation. Surprisingly, the mutant cells assumed an asymmetric distribution in the UB trunks, suggesting a model of branching in which the epithelium of the tip and the adjacent trunk is remodeled to form new branches.  相似文献   

13.
SCAIFE  M. A. 《Annals of botany》1976,40(6):1217-1229
A previously published dynamic model of P uptake and plant growthhas been applied to two sets of solution culture data: thoseof Rorison (1968) for two contrasting wild species, and thoseof Brewster, Bhat and Nye (1975) for onions. Apart from thelogistic constants describing the growth curves of plants withadequate P, all other constants were independently obtainedand assumed to be the same for all species. Plant weights, Pconcentrations and solution P concentrations are all reasonablywell simulated by the model for both experiments. The big differencein responsiveness between fast- and slow-growing species inRorison's experiment is shown to be attributable to differentialdepletion of the solutions. The use of simulation models whichincorporate the depletion of the growing medium might be regardedas an alternative to attempting to eliminate depletion in suchexperiments.  相似文献   

14.
A collection of 821 rhizobacteria from cucumber, originating from different root locations and stages of plant development, was screened for potential biocontrol agents of Pythium aphanidermatum (Edson) Fitzp. The screening procedure exploited carbon source utilization profiles and growth rates of bacteria as indicators of a partial niche overlap with the pathogen. The bacteria were tested for growth on nine carbon sources (glucose, fucose, sucrose, maltose, asparagine, alanine, galacturonic acid, succinic acid, and linoleic acid), most of which are reported to be used by the zoospores of P. aphanidermatum in the infection process. The isolates were classified as fast- or slow-growing, depending on their growth rate in 1/10 strength TSB. By nonhierarchical cluster analysis, 20 clusters were generated of bacteria with similar profiles of carbon source utilization. Redundancy analysis showed that the type of root sample explained 47% of the variance found in the relative abundance of bacteria from the clusters. Bacteria from clusters using none or few of the carbon sources, e.g., maltose and linoleic acid, with many slow-growing isolates, showed a preference for plants in the vegetative or generative stage, or for old root regions (root base). Bacteria from clusters with fast-growing isolates, using many carbon sources, were relatively abundant in the seedling stage. A selection of 127 bacteria from the different clusters was tested for disease suppressive capabilities in bioassays on young cucumber plants in nutrient solution, inoculated with zoospores of P. aphanidermatum. Nine of these bacteria produced biosurfactants, and 27 showed antibiosis against mycelial growth in plate assays. For 31 isolates, significant positive effects on plant biomass were shown, as analyzed with a general linear regression model. For most isolates, these effects occurred only in one of two replicate assays and no reductions in the degree of root and crown rot were found. Of the isolates that used many of the tested carbon sources, only four had positive effects on plant biomass. The majority of the isolates that positively affected plant biomass used few to moderate numbers of carbon sources and did not produce antibiotics or biosurfactants. In conclusion, competition for the tested carbon sources with the zoospores did not play a decisive role in disease suppression, and no clear relation was found between ecophysiological traits and disease suppression. Only isolate 3.1T8, isolated from root tips in the generative stage of plant growth, significantly increased plant biomass and suppressed root and crown rot symptoms in five out of six bioassays. The isolate produced an antifungal substance in plate assays and showed biosurfactant production in several (cucumber-derived) media.  相似文献   

15.
The development from young, slowly growing hyphae to fast growing hyphae in filamentous fungi is referred to as hyphal maturation. We have identified the Paxillin-like protein AgPxl1 in Ashbyagossypii as a developmental protein that is specifically required for hyphal maturation. The early development of A.gossypii strains lacking AgPxl1 is indistinguishable from wild-type. However, at later developmental stages the maximal hyphal extension rate is less than half compared to wild-type and apical branching is affected. Apical branching is characterised as the symmetric division of fast growing hyphal tips resulting in two sister hyphae. In Agpxl1Delta strains two thirds of the apical branching events lead to asymmetric sister hyphae where growth of one branch is either completely aborted or slowed down while extension of the other branch is not affected. This suggests that AgPxl1 plays a role in the organisation of growth and efficient division of growth upon apical branching in mature mycelia. The conserved C-terminal LIM domains are necessary for AgPxl1 function and also contribute to tip localisation. AgCLA4, a PAK-like kinase, is epistatic to AgPXL1 and robust localisation of AgPxl1 depends on AgCla4. This suggests that AgCla4 acts upstream of AgPxl1.  相似文献   

16.
Mohamed  S. H.  Smouni  A.  Neyra  M.  Kharchaf  D.  Filali-Maltouf  A. 《Plant and Soil》2000,224(2):171-183
Thirty isolates of root-nodulating bacteria obtained from Acacia cyanophylla, A. karroo, A. cyclops, A. tortilis (subsp.raddiana), Faidherbia albida and Acacia sp., grown in different regions of Libya, were studied by performing numerical analysis of 104 characteristics. Three fast- and one slow-growing reference strains from herbaceous and woody legumes were included. Five distinct clusters were formed. The fast-growing reference strains were separated from the isolates whereas the slow-growing was included in cluster 4. With the exception of one cluster, the majority of clusters were formed regardless of the host plant or site of origin. Based on plant tests, generation times, acid production and carbon utilization the isolates were diverse (fast and slow-growing isolates). Like slow-growing isolates, most of the fast-growing isolates appeared to be non-specific, nodulated many species from the same genus notably F. albida, known to nodulate only with slow-growing strains. Most clusters grew at temperatures 35 °C and 37 °C; some grew at temperatures above 40 °C. The majority of isolates grew at acid and alkaline pH and only one isolate grew below pH 4. Most isolates were able to utilize many amino acids as nitrogen sources and to reduce nitrate. Urea was hydrolysed by all clusters. Monosaccharides and polyols were used by slow and fast-growing isolates as the only carbon sources whereas assimilation of disaccharides varied: Some isolates, like slow-growing isolates, failed to utilize these carbon sources. Most isolates were unable to utilize polysaccharides. Regarding tolerance to NaCl on agar medium, the majority of isolates were unable to grow at a concentration of 2% NaCl, but some were highly resistant and there was one isolate which grew at 8% NaCl. Most isolates were resistant to heavy metals and to antibiotics.  相似文献   

17.
Highly polarized exocytosis of vesicles at hyphal apices is an essential requirement of tip growth. This requirement may be met by the localization and/or activation of an apical SNARE-based machinery. We have cloned nsyn1 and nsyn2, SNAREs predicted to function at the plasma membrane in Neurospora crassa. Transformation of extra copies of nsyn1 into wild-type strains displayed effects consistent with quelling of nsyn1 expression, which was lethal in most transformants. All surviving transformants grew slowly, conidiated poorly, and were male sterile. In addition, antisense nsyn1 strains grew slowly, with abnormal hyphal diameters and polarity and defective conidiation. For nsyn2, several repeat induced point mutation (RIP) crosses produced no, or poorly germinating ascospores. Those that germinated produced slow-growing hyphae with abnormal branching. The defects in nsyn1 and nsyn2 mutants are consistent with differential impaired vesicle fusion in hyphal tips and other developmental stages.  相似文献   

18.
The hypothesis was tested that slow-growing grass species perform a greater proportion of total plant NO3- reduction in their roots than do fast-growing grasses. Eight grass species were selected that differed in maximum relative growth rate (RGR) and net NO3- uptake rate (NNUR). Plants were grown with free access to nutrients in hydroponics under controlled-environment conditions. The site of in vivo NO3- reduction was assessed by combining in vivo NO3- reductase activity (NRA) assays with biomass allocation data, and by analysing the NO3- to amino acid ratio of xylem sap. In vivo NRA of roots and shoots increased significantly with increasing NNUR and RGR. The proportion of total plant NO3- reduction that occurs in roots was found to be independent of RGR and NNUR, with the shoot being the predominant site of NO3- reduction in all species. The theoretical maximum proportion of whole plant nitrogen assimilation that could take place in the roots was calculated using information on root respiration rates, RGR, NNUR, and specific respiratory costs associated with growth, maintenance and ion uptake. The calculated maximum proportion that the roots can contribute to total plant NO3- reduction was 0.37 and 0.23 for the fast-growing Dactylis glomerata L. and the slow-growing Festuca ovina L., respectively. These results indicate that slow-growing grass species perform a similar proportion of total plant NO3- reduction in their roots to that exhibited by fast-growing grasses. Shoots appear to be the predominant site of whole plant NO3- reduction in both fast- and slow-growing grasses when plants are grown with free access to nutrients.  相似文献   

19.
A mathematical model for apical growth, septation, and branching of mycelial microorganisms is presented. The model consists of two parts: the determinstic part of the model is based on fundamental cellular and physical mechanisms; it represents the kinetics for growth of hyphal tips and septation of apical as well as intercalary compartments. In regard to random occurrences of hyphal growth and branching, the stochastic part deals with branching processes, tip growth directions, and outgrowth orientations of branches. The model can explain the morphological development of mycelia up to the formation of pellets. The results, as predicted by the model, correspond very closely to those observed in experiments. In addition, some unmeasured states can be ascertained, such as the distribution functions of hyphal length (biomass) and tips along pellet radii.  相似文献   

20.
Cessation of renal morphogenesis in mice   总被引:2,自引:1,他引:1  
The kidney develops by cycles of ureteric bud branching and nephron formation. The cycles begin and are sustained by reciprocal inductive interactions and feedback between ureteric bud tips and the surrounding mesenchyme. Understanding how the cycles end is important because it controls nephron number. During the period when nephrogenesis ends in mice, we examined the morphology, gene expression, and function of the domains that control branching and nephrogenesis. We found that the nephrogenic mesenchyme, which is required for continued branching, was gone by the third postnatal day. This was associated with an accelerated rate of new nephron formation in the absence of apoptosis. At the same time, the tips of the ureteric bud branches lost the typical appearance of an ampulla and lost Wnt11 expression, consistent with the absence of the capping mesenchyme. Surprisingly, expression of Wnt9b, a gene necessary for mesenchyme induction, continued. We then tested the postnatal day three bud branch tip and showed that it maintained its ability both to promote survival of metanephric mesenchyme and to induce nephrogenesis in culture. These results suggest that the sequence of events leading to disruption of the cycle of branching morphogenesis and nephrogenesis began with the loss of mesenchyme that resulted from its conversion into nephrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号