首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuromyelitis optica (NMO) is an inflammatory disease characterized by recurrent attacks of optic neuritis and myelitis. It is generally accepted that autoantibodies against aquaporin 4 water channel protein play a pathogenic role in neuromyelitis optica. We have recently reported that plasmablasts are increased in the peripheral blood of this autoimmune disease, and are capable of producing autoantibodies against aquaporin 4. Here, we demonstrate that CD138+HLA-DR+ plasmablasts, a subset of IgG-producing cells, are increased in the peripheral blood and are enriched among the cerebrospinal fluid (CSF) lymphocytes during the relapse of neuromyelitis optica. Notably, these CD138+HLA-DR+ plasmablasts overexpress CXCR3, whose ligands are present in the cerebrospinal fluid during the relapse of neuromyelitis optica. These results led us to speculate that plasmablasts producing anti-aquaporin 4 autoantibodies might traffic toward the central nervous system (CNS). Furthermore, we performed single-cell sorting of plasmablasts from peripheral blood and CSF samples from NMO and sequenced the complementarity-determining regions (CDRs) of the IgG heavy chain expressed by the sorted plasmablast clones. There were high frequencies of mutations in the CDRs compared with framework regions, indicating that these plasmablast clones would represent a post-germinal center B-cell lineage. Consistent with the preceding results, the plasmablast clones from the peripheral blood shared the same CDR sequences with the clones from the CSF. These results indicate that IgG-producing plasmablasts, which are guided by helper T-cells, may migrate from the peripheral blood preferentially to the CSF. Since migratory plasmablasts could be involved in the inflammatory pathology of NMO, the B-cell subset and their migration might be an attractive therapeutic target.  相似文献   

2.
徐雁  崔丽英 《生命科学》2014,(6):657-664
多发性硬化(multiple sclerosis,MS)和视神经脊髓炎(neuromyeltis optica,NMO)是两个独立的中枢神经系统炎性脱髓鞘疾病,B细胞和体液免疫在二者发生发展中发挥了重要作用。越来越多证据显示,针对B细胞和/或抗体的治疗有可能同时对抗MS和NMO。就B细胞及其体液免疫在MS和NMO发生发展及治疗中的作用做一综述。  相似文献   

3.
Wang H  Wang K  Xu W  Wang C  Qiu W  Zhong X  Dai Y  Wu A  Hu X 《Journal of neurochemistry》2012,122(1):19-23
The concept that the immune system plays a central role in the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica (NMO) was indisputable. However, neurodegenerative pathological features including loss of axons and neurons were also found in the lesions of these diseases. α-Synuclein is one of the most abundant proteins in pre-synaptic terminals. Recently, many research show α-synuclein level in CSF may reflect the progression of synaptic dysfunction and neuronal apoptosis. Whether the levels of CSF α-synuclein are changed in MS and NMO patients remain unknown. In this study, CSF α-synuclein was measured by an enzyme-linked immunosorbent assay (ELISA) in MS (n = 18) patients, NMO (n = 22) patients, Parkinson's disease patients (n = 9), and the controls (n = 11). We found concentration of α-synuclein in MS and NMO patients were significantly higher than Parkinson's disease subgroup and the controls. Both MS and NMO revealed an increased disease disability with increased CSF α-synuclein. Thus, CSF α-synuclein may be reflect injure axons and neurons in inflammatory demyelinating diseases.  相似文献   

4.
Patients with autoimmune disorders often have low levels of 25-hydroxyvitamin D [25(OH)D3], which correlates with disability or disease activity. Vitamin D may play a role in neuromyelitis optica (NMO) or NMO spectrum disorder (NMOSD), as an important factor involved in immunological pathways. We investigated the relationship between vitamin D levels and disease related disability and clinical activity in patients with NMOSD. Blood samples from 51 patients with NMOSD who were positive for anti-aquaporin4-antibody (AQP4-ab) and 204 healthy controls were collected for 25(OH)D3 measurement. Clinical parameters, including expanded disability status scale (EDSS) score, annualized relapse rate (ARR) and time of blood sampling relative to attack, were determined in patients with NMOSD. We found that 25(OH)D3 levels were significantly lower in patients with NMOSD compared to healthy controls. There was no difference between 25(OH)D3 levels in blood samples taken at relapse or remission, and no association between 25(OH)D3 levels and ARR, but there was an inverse correlation between 25(OH)D3 levels and EDSS scores in patients with NMOSD. It remains to be determined whether low vitamin D levels predispose to NMO and/or modify disease severity, or are secondary to neurological disability. In either case the results could also be of relevance to other neurological diseases such as multiple sclerosis as well as NMO.  相似文献   

5.
Recurrent attacks of optic neuritis and myelitis are the hallmarks of both neuromyelitis optica (NMO) and multiple sclerosis (MS). NMO immunoglobulin G (NMO-IgG), which recognizes astrocytic aquaporin-4 (AQP4) water channels, is a specific serum autoantibody that distinguishes NMO from MS. The pathogenic role of the anti-AQP4 antibody (AQP4-Ab, NMO-IgG) in NMO has been speculated based on several studies in vitro. The aim of this study was to demonstrate the pathogenicity of AQP4-Ab in vivo. We obtained IgG from patients who underwent therapeutic plasmapheresis, and developed an animal model by passive transfer of IgG to rats. The active lesions of the rats exhibited pathological characteristics strikingly similar to those of NMO, marked by astrocytic loss and perivascular deposition of immunoglobulin and complements. These findings provide the first evidence of the pathogenicity of AQP4-Ab in vivo and support the therapeutic efficacy of eliminating the antibodies by plasmapheresis.  相似文献   

6.
Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN.  相似文献   

7.
The aim of this article is to describe the roles of water channel proteins (WCPs) in brain functionality. The fluid compartments of the brain, which include the brain parenchyma (with intracellular and extracellular spaces), the intravascular and the cerebrospinal fluid compartments are presented. Then the localization and functional roles of WCPs found in the brain are described: AQP1, AQP2, AQP3, AQP4, AQP5, AQP7, AQP8, AQP9 and AQP11. In subsequent chapters the involvement of brain WCPs in pathologies are discussed: brain edema, brain trauma, brain tumors, stroke, dementia (Alzheimer's disease, human immunodeficiency virus - HIV-dementia), autism, pain signal transduction and migraine, hydrocephalus and other pathologies with neurological implications: eclampsia, uremia. New WCP ligands for brain imaging are also discussed.  相似文献   

8.
Inflammatory demyelinating lesions of the central nervous system are a common feature of both neuromyelitis optica and multiple sclerosis. Despite this similarity, it is evident clinically that the accumulation of disability in patients with neuromyelitis optica is relapse related and that a progressive phase is very uncommon. This poses the question whether there is any pathological evidence of disease activity or neurodegeneration in neuromyelitis optica between relapses. To investigate this we conducted a longitudinal advanced MRI study of the brain and spinal cord in neuromyelitis optica patients, comparing to patients with multiple sclerosis and controls. We found both cross-sectional and longitudinal evidence of diffusely distributed neurodegenerative surrogates in the multiple sclerosis group (including thalamic atrophy, cervical cord atrophy and progressive widespread diffusion and myelin water imaging abnormalities in the normal appearing white matter) but not in those with neuromyelitis optica, where localised abnormalities in the optic radiations of those with severe visual impairment were noted. In addition, between relapses, there were no new silent brain lesions in the neuromyelitis optica group. These findings indicate that global central nervous system neurodegeneration is not a feature of neuromyelitis optica. The work also questions the theory that neurodegeneration in multiple sclerosis is a chronic sequela to prior inflammatory and demyelinating pathology, as this has not been found to be the case in neuromyelitis optica where the lesions are often more destructive.  相似文献   

9.
The detection of reactivity against autoantigens plays a crucial role in the diagnosis of autoimmune diseases. However, only a few autoantibodies are known in each disease, and their precise targets are often not precisely defined. In neuromyelitis optica (NMO), an autoimmune disease of the central nervous system, anti‐aquaporin 4 antibodies are currently the only available immunological markers, although they are not detected in 10–50% of patients. Using enzyme‐linked immunosorbent assays, we evaluated the reactivity against 19 structurally defined peptides in 26 NMO sera compared with 21 healthy subjects. We observed increased levels of IgG against myelin basic protein sequence MBP(156–175), pyruvate dehydrogenase sequence PDH(167–186) and CSF114(Glc), the last of these having a possible correlation with onset of inflammatory relapse. These preliminary results may suggest that the aquaporin 4 is not the unique target in NMO and that the study of reactivity against these peptides would be helpful for the diagnosis and follow‐up of the disease. Complementary studies are however warranted to confirm these results. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.

Objectives

Inflammatory demyelinating diseases of the CNS comprise a broad spectrum of diseases like neuromyelitis optica (NMO), NMO spectrum disorders (NMO-SD) and multiple sclerosis (MS). Despite clear classification criteria, differentiation can be difficult. We hypothesized that the urine proteome may differentiate NMO from MS.

Methods

The proteins in urine samples from anti-aquaporin 4 (AQP4) seropositive NMO/NMO-SD patients (n = 32), patients with MS (n = 46) and healthy subjects (HS, n = 31) were examined by quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) after trypsin digestion and iTRAQ labelling. Immunoglobulins (Ig) in the urine were validated by nephelometry in an independent cohort (n = 9–10 pr. groups).

Results

The analysis identified a total of 1112 different proteins of which 333 were shared by all 109 subjects. Cluster analysis revealed differences in the urine proteome of NMO/NMO-SD compared to HS and MS. Principal component analysis also suggested that the NMO/NMO-SD proteome profile was useful for classification. Multivariate regression analysis revealed a 3-protein profile for the NMO/NMO-SD versus HS discrimination, a 6-protein profile for NMO/NMO-SD versus MS discrimination and an 11-protein profile for MS versus HS discrimination. All protein panels yielded highly significant ROC curves (AUC in all cases >0.85, p≤0.0002). Nephelometry confirmed the presence of increased Ig-light chains in the urine of patients with NMO/NMO-SD.

Conclusion

The urine proteome profile of patients with NMO/NMO-SD is different from MS and HS. This may reflect differences in the pathogenesis of NMO/NMO-SD versus MS and suggests that urine may be a potential source of biomarkers differentiating NMO/NMO-SD from MS.  相似文献   

11.

Background

Motor and somatosensory evoked potentials (MEPs and SSEPs) are sensitive tools for detecting subclinical lesions, assessing disease severity, and determining the prognosis for outcomes of patients with inflammatory neurological diseases such as multiple sclerosis. However, their roles in neuromyelitis optica (NMO), a severe inflammatory neurological disease that predominantly involves optic nerves and spinal cord, have not yet been clarified.

Methods and Findings

Clinical symptoms and examination findings at relapses of 30 NMO patients were retrospectively reviewed. Abnormal MEPs were observed in 69.2% of patients. Patients with abnormal motor central conduction time (CCT) of the lower limbs had higher Kurtzke Expanded Disability Status Scale (EDSS) scores than those with normal responses (P = 0.027). Abnormal SSEPs were found in 69.0% of patients. Patients with abnormal lower limb sensory CCT had higher EDSS scores than those with normal responses (P = 0.019). In 28 patients followed up more than 6 months, only one of 11 patients (9.1%) with normal SSEPs of the lower limbs had new relapses within 6 months, whereas 8 of 17 patients (47.1%, P = 0.049) with abnormal SSEPs of the lower limbs had new relapses.

Conclusions

These results indicate MEPs and SSEPs of the lower limbs are good indicators for the disability status at relapses of NMO. Lower limb SSEPs may be a good tool for reflecting the frequency of relapses of NMO.  相似文献   

12.
Autoantibodies against astrocyte water channel aquaporin-4 (AQP4) are thought to be pathogenic in neuromyelitis optica (NMO). Prior work has suggested that a key component of NMO autoantibody (NMO-IgG) pathogenesis is internalization of AQP4 and the associated glutamate transporter EAAT2, leading to glutamate excitotoxicity. Here, we show selective endocytosis of NMO-IgG and AQP4 in transfected cell cultures, but little internalization in brain in vivo. AQP4-dependent endocytosis of NMO-IgG occurred rapidly in various AQP4-transfected cell lines, with efficient transport from early endosomes to lysosomes. Cell surface AQP4 was also reduced following NMO-IgG exposure. However, little or no internalization of NMO-IgG, AQP4, or EAAT2 was found in primary astrocyte cultures, nor was glutamate uptake affected by NMO-IgG exposure. Following injection of NMO-IgG into mouse brain, NMO-IgG binding and AQP4 expression showed a perivascular astrocyte distribution, without detectable cellular internalization over 24 h. We conclude that astrocyte endocytosis of NMO-IgG, AQP4, and EAAT2 is not a significant consequence of AQP4 autoantibody in vivo, challenging generally accepted views about NMO pathogenesis.  相似文献   

13.

Background  

The role of different chemokine receptors in the pathogenesis of multiple sclerosis (MS) has been extensively investigated; however, little is known about the difference in the role of chemokine receptors between the pathogenesis of neuromyelitis optica (NMO) and MS. Therefore, we examined the expression of chemokine receptors on peripheral blood lymphocytes (PBL) in MS and NMO.  相似文献   

14.
Multiple sclerosis (MS) and neuromyelitis optica (NMO) are demyelinating autoimmune inflammatory diseases that affect the central nervous system (CNS). Previous genome-wide or candidate gene studies have suggested that genetic variants might be associated with the risk of MS or NMO. Aquaporin 4 (AQP4) is a commonly distributed water channel in astrocytes of the CNS, and its expression is decreased in NMO lesions due to astrocyte cytotoxicity. Previous studies have suggested the associations of AQP4 single nucleotide polymorphisms (SNPs) with MS and/or NMO. However, there have been few replication studies in various ethnic populations. This study, as the first of its kind performed in an Asian population, investigated associations of AQP4 SNPs with the risk of inflammatory demyelinating disease (IDD), including MS and NMO, in a Korean population. A total of seven common AQP4 SNPs were selected based on status of linkage disequilibrium (LD), and then genotyped in 178 IDD cases (79 MS and 99 NMO patients) and 237 normal controls. Statistical analyses showed no significant associations between AQP4 SNPs/haplotypes and development of IDD, including MS and NMO (P > 0.05). Further replications in larger cohorts and other ethnic groups are needed.  相似文献   

15.
Recurrent myelitis is one of the predominant characteristics in patients with neuromyelitis optica (NMO). While paresis, visual loss, sensory deficits, and bladder dysfunction are well known symptoms in NMO patients, pain has been recognized only recently as another key symptom of the disease. Although spinal cord inflammation is a defining aspect of neuromyelitis, there is an almost complete lack of data on altered somatosensory function, including pain. Therefore, eleven consecutive patients with NMO were investigated regarding the presence and clinical characteristics of pain. All patients were examined clinically as well as by Quantitative Sensory Testing (QST) following the protocol of the German Research Network on Neuropathic Pain (DFNS). Additionally, plasma endocannabinoid levels and signs of chronic stress and depression were determined. Almost all patients (10/11) suffered from NMO-associated neuropathic pain for the last three months, and 8 out of 11 patients indicated relevant pain at the time of examination. Symptoms of neuropathic pain were reported in the vast majority of patients with NMO. Psychological testing revealed signs of marked depression. Compared to age and gender-matched healthy controls, QST revealed pronounced mechanical and thermal sensory loss, strongly correlated to ongoing pain suggesting the presence of deafferentation-induced neuropathic pain. Thermal hyperalgesia correlated to MRI-verified signs of spinal cord lesion. Heat hyperalgesia was highly correlated to the time since last relapse of NMO. Patients with NMO exhibited significant mechanical and thermal dysesthesia, namely dynamic mechanical allodynia and paradoxical heat sensation. Moreover, they presented frequently with either abnormal mechanical hypoalgesia or hyperalgesia, which depended significantly on plasma levels of the endogenous cannabinoid 2-arachidonoylglycerole (2-AG). These data emphasize the high prevalence of neuropathic pain and hyperalgesia in patients with NMO. The degree of mechanical hyperalgesia reflecting central sensitization of nociceptive pathways seems to be controlled by the major brain endocannabinoid 2-AG.  相似文献   

16.
A number of neurological and muscular disorders are characterized by the accumulation of aggregate-prone proteins and are referred to as protein deposit or protein conformation diseases. Besides some sporadic forms, most of them are genetically inherited in an autosomal dominant manner, although recessive forms also exist. Although genetically very heterogeneous, some of these diseases are the result of mutations in some members of the mammalian small heat shock protein family (sHSP/HSPB), which are key players of the protein quality control system and participate, together with other molecular chaperones and co-chaperones, in the maintenance of protein homeostasis. Thus, on one hand upregulation of specific members of the HSPB family can exert protective effects in protein deposit diseases, such as the polyglutamine diseases. On the other hand, mutations in the HSPBs lead to neurological and muscular disorders, which may be due to a loss-of-function in protein quality control and/or to a gain-of-toxic function, resulting from the aggregation-proneness of the mutants. In this review we summarize the current knowledge about some of the best characterized functions of the HSPBs (e.g. role in cytoskeleton stabilization, chaperone function, anti-aggregation and anti-apoptotic activities), also highlighting differences in the properties of the various HSPBs and how these may counteract protein aggregation diseases. We also describe the mutations in the various HSPBs associated with neurological and muscular disorders and we discuss how gain-of-toxic function mechanisms (e.g. due to the mutated HSPB protein instability and aggregation) and/or loss-of-function mechanisms can contribute to HSPB-associated pathologies. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   

17.

Background

Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO), relapsing remitting multiple sclerosis (RRMS), and primary progressive MS (PPMS), and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis.

Methods/Principal Findings

We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND) by multiplexed fluorescent bead-based immunoassay. Interleukin (IL)-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF) and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients.

Conclusions

Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell and macrophage/microglia inflammation in the central nervous system. In RRMS, only a mild elevation of proinflammatory cytokines/chemokines was detectable at relapse.  相似文献   

18.
BackgroundDiffusion tensor imaging (DTI) has been used for the evaluation of the white matter integrity. In this study, we evaluated optic nerve impairment in patients with neuromyelitis optica (NMO) using DTI.Conclusions/SignificanceDecreased FA value in the intraorbital optic nerve, especially in the posterior part of the nerve, was demonstrated as a characteristic MR feature for NMO-related optic nerve impairment.  相似文献   

19.
Neuromyelitis optica (NMO) is an autoimmune 'aquaporinopathy' of the central nervous system that causes inflammatory demyelinating lesions primarily in spinal cord and optic nerve, leading to paralysis and blindness. NMO lesions show loss of aquaporin-4 (AQP4), GFAP and myelin, infiltration of granulocytes and macrophages, and perivascular deposition of activated complement. Most patients with NMO are seropositive for immunoglobulin autoantibodies (AQP4-IgG) against AQP4, the principal water channel of astrocytes. There is strong evidence that AQP4-IgG is pathogenic in NMO, probably by a mechanism involving complement-dependent astrocyte cytotoxicity, causing leukocyte infiltration, cytokine release and blood-brain barrier disruption, which leads to oligodendrocyte death, myelin loss and neuron death. Here, we review the evidence for this and alternative proposed NMO pathogenesis mechanisms, such as AQP4-IgG-induced internalization of AQP4 and glutamate transporters, complement-independent cell-mediated cytotoxicity, and AQP4-IgG inhibition of AQP4 water transport function. Based on the initiating pathogenic role of AQP4-IgG binding to astrocyte AQP4 in NMO, selective blocker therapies are under development in which AQP4-targeted monoclonal antibodies or small molecules block binding of AQP4-IgG to astrocytes and consequent downstream pathology.  相似文献   

20.

Objective

To investigate the topological alterations of the whole-brain white-matter (WM) structural networks in patients with neuromyelitis optica (NMO).

Methods

The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups.

Results

The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri.

Conclusion

Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号