首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin.  相似文献   

2.
Previous work has shown that attachment of Vibrio harveyi to chitin is specific and involves at least two chitin-binding peptides. However, the roles and regulation of these chitin-binding peptides in attachment are still unclear. Here we show that preincubation with the oligomeric sugars composing chitin stimulated chitinase activity, cellular attachment to chitin, and production of chitin-binding peptides. One of these peptides, a 53-kDa peptide, is produced constitutively and appears to mediate initial attachment to chitin. Synthesis of another peptide, a 150-kDa chitin-binding peptide, is induced by chitin and thus may be involved in time-dependent attachment. Coordinated regulation of attachment and degradation of chitin may give bacteria like V. harveyi a selective advantage over other bacteria in nutrient-poor aquatic environments.  相似文献   

3.
Chitin from Streptomyces lunalinharesii spores, detected on its outermost surface layer, was isolated and characterized by chemical and spectroscopic methods, transmission electron microscopy and flow cytometry analysis. Gold–chitinase- and gold–lectin ( Lycopersicum esculentum agglutinin, LEA)-conjugated labels were used in microscopy experiments, whereas a fluorescence–lectin (LEA) conjugate was used in flow cytometry analysis. Chitin isolation consisted of several steps of hot alkali and nitrous acid treatment, and the final material was obtained in the colloidal form. The infrared and the 13C CP/MAS NMR spectra of Streptomyces sp. colloidal chitin and colloidal chitin obtained from commercial crab shell chitin were very similar. Incubation of the spores with gold-labeled lectin, or gold-labeled recombinant chitinase, showed the presence of gold particles around the spore surface, indicating the specific binding of the lectin or the recombinant chitinase with the chitin present on the outermost surface. Flow cytometry analysis, using the fluorescence–lectin conjugate, confirmed these results. According to scanning electron microscopy, S. lunalinharesii presented spore surface ornamentation belonging to the spiny group. This is the first detailed characterization of chitin on the spore's outermost layer from a Streptomyces species.  相似文献   

4.
Lactocin 705 is a bacteriocin whose activity depends upon the complementation of two peptides, termed Lac705alpha and Lac705beta. Neither Lac705alpha nor Lac705beta displayed bacteriocin activity by itself when the growth of sensitive cells was monitored. To obtain molecular insights into the lactocin 705 mechanism of action, Fourier transform infrared spectroscopy was used to investigate the interactions of each peptide (Lac705alpha and Lac705beta) with dipalmitoylphosphatidylcholine liposomal membranes. Both peptides show the ability to interact with the zwitterionic membrane but at different bilayer levels. While Lac705alpha interacts with the interfacial region inducing dehydration, Lac705beta peptide interacts with only the hydrophobic core. This paper presents the first experimental evidence that supports the hypothesis that Lac705alpha and Lac705beta peptides could form a transmembrane oligomer. From the obtained results, a mechanism of action of lactocin 705 on membrane systems is proposed. The component Lac705alpha could induce the dehydration of the bilayer interfacial region, and the Lac705beta peptide could insert in the hydrophobic region of the membrane where the peptide has adequate conditions to achieve the oligomerization.  相似文献   

5.
6.
A chitinolytic bacterium was isolated from Lake Suwa and identified as Aeromonas hydrophila strain SUWA-9. The strain grew well on a synthetic medium containing colloidal chitin as sole carbon source. Chitin-degrading activity was induced by colloidal chitin or N-acetylglucosamine (GlcNAc). Most of the activity, however, was not detected in culture fluid but was associated with cells. A beta-N-acetylglucosaminidase was purified after it was solubilized from cells by sonication. The purified enzyme hydrolyzed N-acetylchitooligomers from dimer to pentamer and produced GlcNAc as a final product. The enzyme also hydrolyzed synthetic substrates such as p-nitrophenyl (pNP)-N-acetyl-beta-D-glucosaminide and pNP-N-acetyl-beta-D-galactosaminide. A gene coding for the purified beta-N-acetylglucosaminidase was isolated. The ORF identified is 2661 nucleotides long and encodes a precursor protein of 887 amino acids including a signal peptide of 22 amino acid residues. The amino acid sequence deduced showed a high similarity to those of bacterial beta-N-acetylhexosaminidases classified in family 20 of glycosyl hydrolases.  相似文献   

7.
The Clostridium paraputrificum chiB gene, encoding chitinase B (ChiB), consists of an open reading frame of 2,493 nucleotides and encodes 831 amino acids with a deduced molecular weight of 90,020. The deduced ChiB is a modular enzyme composed of a family 18 catalytic domain responsible for chitinase activity, two reiterated domains of unknown function, and a chitin-binding domain (CBD). The reiterated domains are similar to the repeating units of cadherin proteins but not to fibronectin type III domains, and therefore they are referred to as cadherin-like domains. ChiB was purified from the periplasm fraction of Escherichia coli harboring the chiB gene. The molecular weight of the purified ChiB (87,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, was in good agreement with the value (86,578) calculated from the deduced amino acid sequence excluding the signal peptide. ChiB was active toward chitin from crab shells, colloidal chitin, glycol chitin, and 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)2]. The pH and temperature optima of the enzyme were 6.0 and 45 degrees C, respectively. The Km and Vmax values for 4-MU-(GlcNAc)2 were estimated to be 6.3 microM and 46 micromol/min/mg, respectively. SDS-PAGE, zymogram, and Western blot analyses using antiserum raised against purified ChiB suggested that ChiB was one of the major chitinase species in the culture supernatant of C. paraputrificum. Deletion analysis showed clearly that the CBD of ChiB plays an important role in hydrolysis of native chitin but not processed chitin such as colloidal chitin.  相似文献   

8.
An extracellular chitinase of Bacillus sp. WY22 was purified by 9.6-fold. It had a Mr of 35 kDa, an apparent K m value for colloidal chitin of 3 mg ml–1 and was optimally active at 37 °C and pH 5.5 over 1 h. The enzyme could also hydrolyse swollen chitin, glycol chitin and chitosan with relative activities of 76%, 34% and 23% compared with colloidal chitin. It formed chitotriose as a major product from colloidal chitin and glycol chitin.  相似文献   

9.
Arthropod hemocyanins and phenoloxidases serve different physiological functions as oxygen transporters and enzymes involved in defense reactions, respectively. However, they are equipped with a structurally similar oxygen-binding center. We have shown that the clotting enzyme of the horseshoe crab, Tachypleus tridentatus, functionally converts hemocyanin to phenoloxidase by forming a complex without proteolytic cleavage (Nagai, T., and Kawabata, S. (2000) J. Biol. Chem. 275, 35297-35301). Here we show that chitin-binding antimicrobial peptides of the horseshoe crab induce the intrinsic phenoloxidase activity of hemocyanin. Tachyplesin, a major Tachypleus antimicrobial peptide with an amphiphilic structure, converted the hemocyanin to phenoloxidase. Surface plasmon resonance analysis revealed the specific interaction of tachyplesin with hemocyanin at K(d) = 3.4 x 10(-)6 m. The chemical modification of Trp or Tyr in tachyplesin, but not Lys or Arg, dramatically reduced the affinity to hemocyanin, suggesting that the binding site is located in the hydrophobic face of tachyplesin. Hemocyanin has no affinity with chitin, but it significantly binds to tachyplesin-coated chitin, leading to the expression of phenoloxidase activity. The chitin coated with antimicrobial peptides may serve as a scaffold for the binding of hemocyanin, and the resulting phenoloxidase activity appears to function as a trigger of exoskeleton wound healing.  相似文献   

10.
F Nicol  S Nir    F C Szoka  Jr 《Biophysical journal》1996,71(6):3288-3301
The effect of cholesterol on the bilayer partitioning of the peptide GALA (WEAALAEALAEALAEHLAEALAEALEALAA) and its assembly into a pore in large unilamellar vesicles composed of neutral and negatively charged phospholipids has been determined. GALA undergoes a conformational change from a random coil to an amphipathic alpha-helix when the pH is reduced from 7.0 to 5.0, inducing at low pH leakage of contents from vesicles. Leakage from neutral or negatively charged vesicles at pH 5.0 was similar and could be adequately explained by the mathematical model (Parente, R. A., S. Nir, and F. C. Szoka, Jr., 1990. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry. 29:8720-8728) which assumed that GALA becomes incorporated into the vesicle bilayer and irreversibly aggregates to form a pore consisting of 10 +/- 2 peptides. Increasing cholesterol content in the membranes resulted in a reduced efficiency of the peptide to induce leakage. Part of the cholesterol effect was due to reduced binding of the peptide to cholesterol-containing membranes. An additional effect of cholesterol was to increase reversibility of surface aggregation of the peptide in the membrane. Results could be explained and predicted with a model that retains the same pore size, i.e., 10 +/- 2 peptides, but includes reversible aggregation of the monomers to form the pore. Resonance energy transfer experiments using fluorescently labeled peptides confirmed that the degree of reversibility of surface aggregation of GALA was significantly larger in cholesterol-containing liposomes, thus reducing the efficiency of pore formation.  相似文献   

11.
Condensation of amino acids to peptides is an important step during the origin of life. However, up to now, successful explanations for plausible prebiotic peptide formation pathways have been limited. Here we report that the oxidation of sulfur (IV) can induce the condensation reaction of carboxylic acids and amines to form amides, and the condensation reaction of amino acids to form peptides. This might be a general reaction contributing to prebiotic peptide formation.  相似文献   

12.
The insect exoskeleton is mainly composed of chitin filaments linked by cuticle proteins. When insects molt, the cuticle of the exoskeleton is renewed by degrading the old chitin and cuticle proteins and synthesizing new ones. In this study, chitin‐binding activity of the wing disc cuticle protein BmWCP4 in Bombyx mori was studied. Sequence analysis showed that the protein had a conservative hydrophilic “R&R” chitin‐binding domain (CBD). Western blotting showed that BmWCP4 was predominately expressed in the wing disc‐containing epidermis during the late wandering and early pupal stages. The immunohistochemistry result showed that the BmWCP4 was mainly present in the wing disc tissues containing wing bud and trachea blast during day 2 of wandering stage. Recombinant full‐length BmWCP4 protein, “R&R” CBD peptide (CBD), non‐CBD peptide (BmWCP4‐CBD?), four single site‐directed mutated peptides (M1, M2, M3 and M4) and four‐sites‐mutated peptide (MF) were generated and purified, respectively, for in vitro chitin‐binding assay. The results indicated that both the full‐length protein and the “R&R” CBD peptide could bind with chitin, whereas the BmWCP4‐CBD? could not bind with chitin. The single residue mutants M1, M2, M3 and M4 reduced but did not completely abolish the chitin‐binding activity, while four‐sites‐mutated protein MF completely lost the chitin‐binding activity. These data indicate that BmWCP4 protein plays a critical role by binding to the chitin filaments in the wing during larva‐to‐pupa transformation. The conserved aromatic amino acids are critical in the interaction between chitin and the cuticle protein.  相似文献   

13.
Thermococcus chitonophagus produces several, cellular and extracellular chitinolytic enzymes following induction with various types of chitin and chitin oligomers, as well as cellulose. Factors affecting the anaerobic culture of this archaeon, such as optimal temperature, agitation speed and type of chitin, were investigated. A series of chitinases, co-isolated with the major, cell membrane-associated endochitinase (Chi70), and a periplasmic chitobiase (Chi90) were subsequently isolated. In addition, a distinct chitinolytic activity was detected in the culture supernatant and partially purified. This enzyme exhibited an apparent molecular mass of 50 kDa (Chi50) and was optimally active at 80°C and pH 6.0. Chi50 was classified as an exochitinase based on its ability to release chitobiose as the exclusive hydrolysis product of colloidal chitin. A multi-component enzymatic apparatus, consisting of an extracellular exochitinase (Chi50), a periplasmic chitobiase (Chi90) and at least one cell-membrane-anchored endochitinase (Chi70), seems to be sufficient for effective synergistic in vivo degradation of chitin. Induction with chitin stimulates the coordinated expression of a combination of chitinolytic enzymes exhibiting different specificities for polymeric chitin and its degradation products. Among all investigated potential inducers and nutrient substrates, colloidal chitin was the strongest inducer of chitinase synthesis, whereas the highest growth rate was obtained following the addition of yeast extract and/or peptone to the minimal, mineralic culture medium in the absence of chitin. In rich medium, chitin monomer acted as a repressor of total chitinolytic activity, indicating the presence of a negative feedback regulatory mechanism. Despite the undisputable fact that the multi-component chitinolytic system of this archaeon is strongly induced by chitin, it is clear that, even in the absence of any chitinous substrates, there is low-level, basal, constitutive production of chitinolytic enzymes, which can be attributed to the presence of traces of chito-oligosaccharides and other structurally related molecules (in the undefined, rich, non-inducing medium) that act as potential inducers of chitinolytic activity. The low, basal and constitutive levels of chitinase gene expression may be sufficient to initiate chitin degradation and to release soluble oligomers, which, in turn, induce chitinase synthesis.  相似文献   

14.
To prevent in vivo degradation, small peptides are usually expressed in fusion proteins from which target peptides can be released by proteolytic or chemical reagents. In this report, a modified Ssp dnaB mini-intein linked with a chitin binding domain tag was used as a fusion partner for production of human brain natriuretic peptide (hBNP), a hormone for the treatment of congestive heart failure. The fusion protein was expressed as an inclusion body in Escherichia coli. After refolding, the fusion protein was purified with a chitin affinity column, and dnaB mini-intein mediated peptide-bond hydrolysis was triggered by shifting the pH in the chitin column to 7.0 at 25 degrees C for 16 h, which led to the release and separation of hBNP from its fusion partner. The hBNP sample was further purified with reverse phase HPLC and its biological activity was assayed in vitro. It was found that hBNP had a potent vasodilatory effect on rabbit aortic strips with an EC(50) of (1.24+/-0.32)x10(-6)mg/ml, which was similar to that of the synthetic BNP standard. The expression strategy described here promises to produce small peptides without use of proteolytic or chemical reagents.  相似文献   

15.
The technique of isoelectric focusing on immobilized pH gradients (IPG) has been applied to the analysis of tryptic digests of alpha- and beta-chains of human hemoglobin. Using peptides purified by RP-HPLC as a reference, it was possible to create a peptide map in the single IEF dimension. Unfortunately, it was not possible to find experimental conditions (medium for migration and staining) which would allow the detection of peptides of less than 10-12 residues. Almost all the bands visible on the gel could be assigned to known peptides. In order to obtain these results the IPG runs were performed in 8 M urea containing 0.5% carrier ampholytes and the gel stained with colloidal Coomassie brilliant blue G-250, in the presence of a high-salt concentration and at acidic pH.  相似文献   

16.
The mature form of chitinase A1 from Bacillus circulans WL-12 comprises a C-terminal domain, two type III modules (domains), and a large N-terminal domain which contains the catalytic site of the enzyme. In order to better define the roles of these chitinase domains in chitin degradation, modified chiA genes encoding various deletions of chitinase A1 were constructed. The modified chiA genes were expressed in Escherichia coli, and the gene products were analyzed after purification by high-performance liquid chromatography. Intact chitinase A1 specifically bound to chitin, while it did not show significant binding activity towards partially acetylated chitosan and other insoluble polysaccharides. Chitinases lacking the C-terminal domain lost much of this binding activity to chitin as well as colloidal chitin-hydrolyzing activity. Deletion of the type III domains, on the other hand, did not affect chitin-binding activity but did result in significantly decreased colloidal chitin-hydrolyzing activity. Hydrolysis of low-molecular-weight substrates, soluble high-molecular-weight substrates, and insoluble high-molecular-weight substrates to which chitinase A1 does not bind were not significantly affected by these deletions. Thus, it was concluded that the C-terminal domain is a chitin-binding domain required for the specific binding to chitin and that this chitin-binding activity is important for efficient hydrolysis of the sufficiently acetylated chitin. Type III modules are not directly involved in the chitin binding but play an important functional role in the hydrolysis of chitin by the enzyme bound to chitin.  相似文献   

17.
目的:旨在分离并选择一株香蕉内生细菌作为内生基因工程生防菌,并克隆其几丁质酶基因的信号肽序列。方法:从香蕉植株杆下部分离并选择了一株拮抗香蕉枯萎病且具有分泌几丁质酶能力的内生细菌,对该菌株进行了形态观察、生理生化测定和16S rDNA序列分析,克隆了其几丁质酶基因的编码序列并预测了其信号肽,构建了含有信号肽和不含信号肽的几丁质酶的表达菌株BL-chi1和BL-chi2。结果:结合形态观察、生理生化特征和16S rDNA序列比对分析确定该菌株为Klebsiella属,将该菌株命名为KKWB 5;BL-chi1和BL-chi2经IPTG诱导后,均表达了与预期蛋白大小一致的蛋白,同时BL-chi1诱导后的培养基上清中出现一条约45kDa的条带,而BL-chi2和空载体的BL-pET22b诱导后的培养基上清中均无此条带;几丁质水解试验发现,BL-chi1诱导后的培养基上清中的蛋白经浓缩和纯化后都能在几丁质平板上形成透明水解圈。结论:该几丁质酶的信号肽能被BL21(DE3)所识别,将几丁质酶分泌到培养基中,并且分泌的几丁质酶具有水解几丁质的生物学活性。内生菌KKWB-5的分离及其几丁质酶分泌信号肽序列的克隆为进一步构建内生工程菌来防治香蕉枯萎病打下了基础。  相似文献   

18.
Pyrococcus furiosus was found to grow on chitin, adding this polysacharide to the inventory of carbohydrates utilized by this hyperthermophilic archaeon. Accordingly, two open reading frames (chiA [Pf1234] and chiB [Pf1233]) were identified in the genome of P. furiosus, which encodes chitinases with sequence similarity to proteins from the glycosyl hydrolase family 18 in less-thermophilic organisms. Both enzymes contain multiple domains that consist of at least one binding domain and one catalytic domain. ChiA (ca. 39 kDa) contains a putative signal peptide, as well as a binding domain (ChiA(BD)), that is related to binding domains associated with several previously studied bacterial chitinases. chiB, separated by 37 nucleotides from chiA and in the same orientation, encodes a polypeptide with two different proline-threonine-rich linker regions (6 and 3 kDa) flanking a chitin-binding domain (ChiB(BD) [11 kDa]), followed by a catalytic domain (ChiB(cat) [35 kDa]). No apparent signal peptide is encoded within chiB. The two chitinases share little sequence homology to each other, except in the catalytic region, where both have the catalytic glutamic acid residue that is conserved in all family 18 bacterial chitinases. The genes encoding ChiA, without its signal peptide, and ChiB were cloned and expressed in Escherichia coli. ChiA exhibited no detectable activity toward chitooligomers smaller than chitotetraose, indicating that the enzyme is an endochitinase. Kinetic studies showed that ChiB followed Michaelis-Menten kinetics toward chitotriose, although substrate inhibition was observed for larger chitooligomers. Hydrolysis patterns on chitooligosaccharides indicated that ChiB is a chitobiosidase, processively cleaving off chitobiose from the nonreducing end of chitin or other chitooligomers. Synergistic activity was noted for the two chitinases on colloidal chitin, indicating that these two enzymes work together to recruit chitin-based substrates for P. furiosus growth. This was supported by the observed growth on chitin as the sole carbohydrate source in sulfur-free media.  相似文献   

19.
Chitinolytic properties of Bacillus pabuli K1   总被引:3,自引:1,他引:3  
The chitinolytic properties of Bacillus pabuli K1 isolated from mouldy grain was studied. Chitinase activity was measured as the release of p -nitrophenol from p -nitrophenyl-N, N'-diacetylchitobiose. Influences of substrate concentration and different environmental variables on growth and chitinase activity were determined. The optimum environmental conditions for chitinase production were: 30°C, initial pH 8, initial oxygen 10% and aw > 0.99. Chitinase production was induced when B. pabuli K1 was grown on colloidal chitin. The smallest chito-oligosaccharide able to induce chitinase production was N, N'-diacetylchitobiose, (GlcNAc)2. Production was also induced by (GlcNAc)3 and (GlcNAc)4. When the bacterium was grown on glucose or N -acetylglucosamine, no chitinases were formed. The highest chitinase production observed was obtained with colloidal chitin as substrate. The production of chitinases by B. pabuli K1 growing on chitin was repressed by high levels (0.6%) of glucose. The production was also repressed by 0.6% starch, laminarin and β-glucan from barley and by glycerol. The addition of pectin and carboxymethyl cellulose increased chitinase production.  相似文献   

20.
The haloarchaeon Natrinema sp. strain J7-2 has the ability to degrade chitin, and its genome harbors a chitin metabolism-related gene cluster that contains a halolysin gene, sptC. The sptC gene encodes a precursor composed of a signal peptide, an N-terminal propeptide consisting of a core domain (N*) and a linker peptide, a subtilisin-like catalytic domain, a polycystic kidney disease domain (PkdD), and a chitin-binding domain (ChBD). Here we report that the autocatalytic maturation of SptC is initiated by cis-processing of N* to yield an autoprocessed complex (N*-IWT), followed by trans-processing/degradation of the linker peptide, the ChBD, and N*. The resulting mature form (MWT) containing the catalytic domain and the PkdD showed optimum azocaseinolytic activity at 3 to 3.5 M NaCl, demonstrating salt-dependent stability. Deletion analysis revealed that the PkdD did not confer extra stability on the enzyme but did contribute to enzymatic activity. The ChBD exhibited salt-dependent chitin-binding capacity and mediated the binding of N*-IWT to chitin. ChBD-mediated chitin binding enhances SptC maturation by promoting activation of the autoprocessed complex. Our results also demonstrate that SptC is capable of removing proteins from shrimp shell powder (SSP) at high salt concentrations. Interestingly, N*-IWT released soluble peptides from SSP faster than did MWT. Most likely, ChBD-mediated binding of the autoprocessed complex to chitin in SSP not only accelerates enzyme activation but also facilitates the deproteinization process by increasing the local protease concentration around the substrate. By virtue of these properties, SptC is highly attractive for use in preparation of chitin from chitin-containing biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号