首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the present study we investigated the effect of chronic variable stress (CVS) on some parameters of the immune system, including levels of cytokines [interleukin 1β (IL-1 β), interleukin 6 (IL-6), tumor necrosis factor α (TNF- α)] and chemokine CCL2 (MCP-1) in the hippocampus of rats. Acetylcholinesterase activity was also evaluated. Sixty-day old Wistar rats were submitted to different mild stressors for 40 days. After the last stress section, the cytokines and MCP-1 were determined by immunoassay and acetylcholinesterase activity by colorimetric method. Results showed that chronic stress significantly increased the levels of IL-1β, IL-6 and TNF-α, but did not alter the levels of MCP-1. In addition, acetylcholinesterase activity was increased in the hippocampus of rats subjected to CVS. These findings suggest that inflammation and cholinergic dysfunction may be, at least in part, important contributors to the neurological dysfunction observed in some depressed patients.  相似文献   

3.

Background

Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI), isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi), has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1.

Methods

HMC-1 cells were stimulated either with IL-1β (10 ng/ml) or TNF-α (100 U/ml) in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA), and IκBα activation by Western blot.

Results

BAI (1.8 to 30 μM) significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM) also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1.

Conclusion

Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.  相似文献   

4.
目的:研究美洛昔康对β-淀粉样蛋白(Aβ)诱导的阿尔茨海默病(AD)模型大鼠脑内炎症损伤的保护作用,并探讨其抑制炎症作用的机制。方法:Aβ1-40海马注射建立AD大鼠模型。免疫组化法观察大鼠海马核因子κBp65(NF-κBp65)和星形胶质细胞(AS)胶质纤维酸性蛋白(GFAP)表达变化;Western-blot法测定大鼠皮层组织GFAP的表达;ELISA法检测大鼠皮层组织肿瘤坏死因子-α(TNF-α)水平变化;RT-PCR法检测大鼠海马组织白细胞介素-1β(IL-1β)mRNA的表达情况。结果:美洛昔康能抑制AD大鼠海马NF-κBp65和GFAP的表达;降低大鼠皮层TNF-α的含量;抑制AD大鼠海马IL-1βmRNA的表达。结论:美洛昔康通过减少AD模型大鼠海马、皮层组织GFAP表达,抑制AS的增生,降低NF-κBp65的活性,减少炎症因子TNF-α和IL-1β的水平,减轻脑内炎症反应。  相似文献   

5.
Chemokines have been implicated convincingly in the driving of leukocyte emigration in different inflammatory reactions. Multiple signaling mechanisms are reported to be involved in intracellular activation of chemokine expression in vascular endothelial cells by various stimuli. Nevertheless, redox-regulated mechanisms of chemokine expression in human dermal microvascular endothelial cells (HDMEC) remain unclear. This study examined the effects of pyrrolidine dithiocarbamate (PDTC, 0.1?mM) and spermine NONOate (Sper-NO, 1?mM) on the secretion and gene expression of chemokines, interleukin (IL)-8, monocyte chemotactic protein (MCP)-1, regulated upon activation normal T cell expressed and secreted (RANTES), and eotaxin. This study also addresses PDTC and Sper-NO effects on activation of nuclear factor kappa B (NF-κB) induced by TNF-α (10?ng/ml). Treatment with TNF-α for 8?h significantly increased secretion of IL-8, MCP-1, and RANTES, but not of eotaxin, in cultured HDMEC. Up-regulation of these chemokines was suppressed significantly by pretreatment with PDTC or Sper-NO for 1?h, but not by 1?mM 8-bromo-cyclic GMP. The mRNA accumulation of IL-8, MCP-1, RANTES, and eotaxin, and activation of NF-κB were induced by TNF-α for 2?h; all were suppressed significantly by the above two pretreatments. These findings indicate that both secretion and mRNA accumulation of IL-8, MCP-1, and RANTES in HDMEC induced by TNF-α are inhibited significantly by pretreatment with PDTC or Sper-NO, possibly via blocking redox-regulated NF-κB activation. These results suggest that restoration of the redox balance using antioxidant agents or nitric oxide pathway modulators may offer new opportunities for therapeutic interventions in inflammatory skin diseases.  相似文献   

6.
Recent studies reported that exposure of juvenile rats to cranial irradiation affects hypothalamic-pituitary-adrenal (HPA) axis stability, leading to its activation along with radiation-induced inflammation. In the present study, we hypothesized whether inflammatory reaction in the CNS could be a mediator of HPA axis response to cranial irradiation (CI). Therefore, we analyzed time-course changes of serum corticosterone level, as well IL-1β and TNF-α level in the serum and hypothalamus of juvenile rats after CI. Protein and gene expression of the glucocorticoid receptor (GR) and nuclear factor kappaB (NFκB) were examined in the hippocampus within 24?h postirradiation interval. Cranial irradiation led to rapid induction of both GR and NFκB mRNA and protein in the hippocampus at 1?h. The increment in NFκB protein persisted for 2?h, therefore NFκB/GR protein ratio was turned in favor of NFκB. Central inflammation was characterized by increased IL-1β in the hypothalamus, with maximum levels at 2 and 4?h after irradiation, while both IL-1β and TNF-α were undetectable in the serum. Enhanced hypothalamic IL-1β probably induced the relocation of hippocampal NFκB to the nucleus and decreased NFκB mRNA at 6?h, indicating promotion of inflammation in the key tissue for HPA axis regulation. Concomitant increase of corticosterone level and enhanced GR nuclear translocation in the hippocampus at 6?h might represent a compensatory mechanism for observed inflammation. Our results indicate that acute radiation response is characterized by increased central inflammation and concomitant HPA axis activation, most likely having a role in protection of the organism from overwhelming inflammatory reaction.  相似文献   

7.
8.
Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.  相似文献   

9.
10.
目的: 观察加味逍遥散对LPS诱导的抑郁模型大鼠海马小胶质细胞TLR4/NF-κB通路的影响,探讨其抗抑郁机制。方法: 将SD大鼠随机分为对照组、模型组、氟西汀组(10.8 mg·kg-1)、加味逍遥散低、高剂量组(3.64、7.28 g·kg-1)。采用慢性LPS注射(ip,0.5 mg·kg-1)的方法建立抑郁大鼠模型,于造模同时灌胃给药,共14 d。采用旷场和强迫游泳实验评价大鼠的抑郁样行为,免疫组化法检测海马小胶质细胞标志蛋白Iba-1的表达,ELISA法检测海马匀浆液中TNF-α、IL-6的含量,Western blot法检测海马TLR4、NF-κB蛋白的表达。结果: 与对照组比较,模型组大鼠抑郁样行为显著(P<0.01),海马小胶质细胞明显激活(P<0.01),TNF-α、IL-6含量增加(P<0.01),TLR4、NF-κB蛋白明显上调(P<0.01);与模型组比较,氟西汀和高剂量加味逍遥散组大鼠抑郁样行为明显缓解(P< 0.05),小胶质细胞Iba-1表达恢复正常(P<0.01),TNF-α、IL-6含量下降(P<0.01),TLR4、NF-κB蛋白表达下调(P<0.05);与氟西汀组比较,高剂量加味逍遥散组各指标无统计学差异,提示两者抗抑郁功效无显著区别。结论: 加味逍遥散能明显改善大鼠的抑郁样行为,其机制可能与抑制小胶质细胞TLR4/NF-κB通路,进而下调炎症因子的表达有关。  相似文献   

11.
Yan D  Peng W  Zhao X  Han X  Liu Q  Li P  Du B  Zhu X 《Protein and peptide letters》2012,19(2):212-218
In an earlier study, we found PBP inhibited the progress of adjuvant-induced arthritis (AA). This study was aimed at evaluating the inhibitory effects of PBP in terms of NF-κB activation by using immunohistochemical and immunofluorescent technique in vitro and in vivo. IL-1β and TNF-α in serum were detected by method of ELISA. Immunofluorescent results showed that PBP inhibited NF-κB p65 translocation into nucleus. In vivo imaging showed that treatment with PBP decreased the enzyme labeling signal of NF-κB p65. Immunohistochemical staining revealed that PBP suppressed production of NF-κB p65 subunit in the joints and attenuated the productions of IL-1β and TNF-α in serum from AA. Moreover, NF-κB p65 nucleus translocation was prevented by simultaneous incubation with PBP and PGE2 was decreased by PBP through a feedback cycle. We report the first confirmation of the mimotope of PGE2 receptor EP4 modulatory action.  相似文献   

12.
Neonatal unconjugated hyperbilirubinemia might cause severe bilirubin neurotoxicity in especially hemolytic conditions. The study aimed to elucidate the potential neuroprotective effects of erythropoietin (EPO) in hemolysis-induced hyperbilirubinemia. In newborn rats, hyperbilirubinemia secondary to hemolysis was induced by injecting with phenylhydrazine hydrochloride (PHZ) and rats were injected with either vehicle or EPO. At 54th hour of the PHZ injection, rats were decapitated. Serum levels of TNF-α, IL-1β, IL-10, brain-derived neurotrophic factor (BDNF) and S100-B and brain malondialdehyde, glutathione levels and myeloperoxidase activities were measured. TUNEL staining and NF-κB expression were evaluated. As compared to control pups, in vehicle-treated PHZ group, TNF-α and IL-1β levels, malondialdehyde level and myeloperoxidase activity were increased with concomitant decreases in IL-10 and glutathione. All EPO regimens reversed PHZ-induced alterations in IL-10, TNF-α, malondialdehyde and glutathione levels. Three-day-treatment abolished increases in myeloperoxidase activity and IL-1β levels, while BDNF and S100-B were elevated. Increased TUNEL (+) cells and NF-κB expressions in the brain of PHZ group were reduced in the 3-day-treated group. EPO exerted anti-inflammatory effects on PHZ-induced neural damage in newborn rats, while the neuroprotection was more obvious when the treatments were repeated successively. The results suggest that EPO treatment may have a therapeutic potential in supporting neuroplasticity in the hyperbilirubinemic neonates.  相似文献   

13.
The cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α induce β-cell death in type 1 diabetes via NF-κB activation. IL-1β induces a more marked NF-κB activation than TNF-α, with higher expression of genes involved in β-cell dysfunction and death. We show here a differential usage of the IKK complex by IL-1β and TNF-α in β-cells. While TNF-α uses IKK complexes containing both IKKα and IKKβ, IL-1β induces complexes with IKKα only; this effect is achieved by induction of IKKβ degradation via the proteasome. Both IKKγ and activation of the TRAF6-TAK1-JNK pathway are involved in IL-1β-induced IKKβ degradation.  相似文献   

14.
Hideaki Shimada 《FEBS letters》2010,584(13):2827-2832
Lysophosphatidic acid (LPA), an inflammatory mediator that is elevated in multiple inflammatory diseases, is a potent activator of Rho kinase (ROCK) signaling and of chemokine production in endothelial cells. In this study, LPA activated ROCK, p38, JNK and NF-κB pathways and induced interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) mRNA and protein expression in human endothelial cells. We mapped signaling events downstream of ROCK, driving chemokine production. In summary, MCP-1 production was partly regulated by ROCK acting upstream of p38 and JNK and mediated downstream by NF-κB. IL-8 production was largely driven by ROCK through p38 and JNK activation, but with no involvement of NF-κB.  相似文献   

15.
The acute-phase proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) demonstrate high-level expression and pleiotropic biological effects, and contribute to the progression and persistence of rheumatoid arthritis (RA). Acid hydrarthrosis is also an important pathological characteristic of RA, and the acid-sensing ion channel 1a (ASIC1a) plays a critical role in acidosis-induced chondrocyte cytotoxicity. However, the roles of IL-1β and TNF-α in acid-induced apoptosis of chondrocytes remain unclear. Rat adjuvant arthritis and primary articular chondrocytes were used as in vivo and in vitro model systems, respectively. ASIC1a expression in articular cartilage was increased and highly colocalized with nuclear factor (NF)-κB expression in vivo. IL-1β and TNF-α could upregulate ASIC1a expression. These cytokines activated mitogen-activated protein kinase and NF-κB pathways in chondrocytes, while the respective inhibitors of these signaling pathways could partially reverse the ASIC1a upregulation induced by IL-1β and TNF-α. Dual luciferase and gel-shift assays and chromatin immunoprecipitation-polymerase chain reaction demonstrated that IL-1β and TNF-α enhanced ASIC1a promoter activity in chondrocytes by increasing NF-κB DNA-binding activities, which was in turn prevented by the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate. IL-1β and TNF-α also decreased cell viability but enhanced LDH release, intracellular Ca2+ concentration elevation, loss of mitochondrial membrane potential, cleaved PARP and cleaved caspase-3/9 expression, and apoptosis in acid-stimulated chondrocytes, which effects could be abrogated by the specific ASIC1a inhibitor psalmotoxin-1 (PcTX-1), ASIC1a-short hairpin RNA or calcium chelating agent BAPTA-AM. These results indicate that IL-1β and TNF-α can augment acidosis-induced cytotoxicity through NF-κB-dependent up-regulation of ASIC1a channel expression in primary articular chondrocytes.  相似文献   

16.
17.
CD73-derived adenosine acts as potent inhibitor of inflammation, and regulatory T cells (Treg) have been shown to express CD73 as a novel marker. This study explored the role of endogenously formed adenosine in modulating NF-κB activity and cytokine/chemokine release from murine Treg and effector T cells (Teff) including key enzymes/purinergic receptors of extracellular ATP catabolism. Stimulating murine splenocytes and CD4(+) T cells with anti-CD3/anti-CD28 significantly upregulated activated NF-κB in CD73(-/-) T cells (wild type: 4.36 ± 0.21; CD73(-/-): 6.58 ± 0.75; n = 4; P = 0.029). This was associated with an augmented release of proinflammatory cytokines IL-2, TNF-α, and IFN-γ. Similar changes were observed with the CD73 inhibitor APCP (50 μM) on NF-κB and IFN-γ in wild-type CD4(+) T-cells. Treatment of stimulated CD4(+) T-cells with adenosine (25 μM) potently reduced IFN-γ release which is mediated by adenosine A2a receptors (A2aR). AMP (50 μM) also reduced cytokine release which was not inhibited by APCP. In Teff, A2aR activation (CGS21680) potently inhibited the release of IL-1, IL-2, IL-3, IL-4, IL-12, IL-13, IFN-γ, TNF-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), CCL3, and CCL4. However, in Treg, CGS21680 did not alter cytokine/chemokine release. In summary, CD73-derived adenosine tonically inhibits active NF-κB in CD4(+) T-cells, thereby modulating the release of a broad spectrum of proinflammatory cytokines and chemokines. Downregulation of P2X7 and upregulation of CD73 in Treg after antigenic stimulation may be an important mechanism to maintain the ability of Treg to generate immunosuppressive adenosine.  相似文献   

18.
19.
The present study was designed to evaluate whether microRNA-146a and its adapter proteins (TRAF6 and IRAK1) are involved in the pathogenesis of diabetes-induced kidney damage. Male Sprague–Dawley rats were divided into control and diabetic groups (n = 6 in each). Diabetes was induced by injection of streptozotocin (55 mg/kg; i.p.) in 12 h fasted rats. Diabetic kidney damage was diagnosed by renal hypertrophy, thickened glomerular basement membrane, widened filtration slits, mesangial expansion, as well as by elevated levels of blood urea and creatinine in diabetic rats 2 months after induction of diabetes. While the expression of NF-κB mRNA and miR-146a were increased in diabetic kidney compared to the sham controls (p < 0.01 for both comparisons), the mRNA levels of IRAK1 and TRAF6 did not statistically reduce. The NF-κB activity and the concentrations of TNF-α, IL-6 and IL-1β in the kidney of diabetic rats were higher than the kidney of controls (p < 0.05 for TNF-α and NF-κB; p < 0.01 for IL-6 and IL-1β). Our results indicate that the upregulation of miR-146a was not accompanied by downregulation of inflammatory mediators in diabetic kidney. It is possible that a defect in the miR-146a-mediated negative loop provides a situation for sustained activation of NF-κB and its targets to promote cells toward abnormalities.  相似文献   

20.
Recent studies have suggested that exogenously administered carbon monoxide (CO) is beneficial for resolution of acute inflammation. Severe acute pancreatitis (SAP) is an inflammatory condition which leads to a systemic inflammatory response syndrome (SIRS). In this study, we investigated the role of CO liberated from carbon monoxide releasing molecule-2 (CORM-2) in rats with SAP. SAP was induced by retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct. Forty Wistar rats were randomly divided into four groups. Sham group was given normal saline after the sham operation. SAP group was treated with normal saline after the induction of SAP. CORM-2 group was injected with CORM-2 (8 mg/kg, i.v.) after the onset of SAP. iCORM-2 group was given iCORM-2 (an inactive compound used as negative control) after SAP induction. All animals were sacrificed at 12 h after the operation. Eighty rats (n = 20 for each group) were monitored for 7 days to observe their survival rates. In another set of experiments, the former three groups received the same treatment as mentioned above. The last group was given ZnPPIX (HO-1 inhibitor) by peritoneal injection at 1 h before the administration of CORM-2 (n = 10 for each group). Serum levels of amylase, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 10 (IL-10) as well as myeloperoxidase (MPO) activity in pancreatic tissue were determined. Histological score, mRNA expression of these cytokines, heme oxygenase-1 (HO-1) expression, HO activity, and nuclear factor κB (NF-κB)-binding activity in the pancreas were also evaluated. Our results showed that compared with SAP group, CORM-2 treatment significantly reduced the serum levels of amylase, TNF-α, and IL-1β, suppressed pancreatic tissue mRNA expression of TNF-α and IL-1β, and decreased MPO activity in the pancreas. In contrast with the pro-inflammatory cytokines, the serum level and pancreatic tissue mRNA expression of IL-10 were markedly increased by the injection of CORM-2. The severity of pancreatic histology and survival rate were also significantly improved by the administration of CORM-2. Treatment with CORM-2 was associated with an increase in HO-1 expression at 12 h after SAP induction. Pretreatment with ZnPPIX had no effect on the production and mRNA expression of these cytokines at 12 h after the development of SAP with the treatment of CORM-2 as compared to CORM-2 group. Furthermore, CORM-2 treatment inhibited the activation of NF-κB in the pancreas. These results indicate that CORM-2-liberated CO exerts protective effects on SAP in rats, and the beneficial effects may be due to the suppression of NF-κB activation and subsequent regulation of NF-κB-dependent expression of cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号