首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A carotid infusion of angiotensin (AII) (10 ng/kg/min) has been found to increase significantly higher mean arterial pressure (MAP) and produces significantly lower bradycardia than AII intravenous infusions at the same dose and rate. Besides, i.v. administration of AII elicits greater impairment on baroreflex sensitivity than carotid infusion of AII does. On the other hand, vasopressin vascular receptor blockade did not modify the baroreflex sensitivity either in the carotid or in the i.v. infusions of AII, and plasma AVP measurements did not change significantly in any group. It clearly indicates that neither AVP nor baroreflex impairment plays any role on the pressor action of AII intracarotid infusions at a low dose. The present results further suggest that baroreflex impairment in rats may unlikely be located in the region irrigated by the carotid artery.  相似文献   

2.
Six young female fallow deer, including 3 that were ovariectomized at 9 months of age, were blood sampled at frequent intervals after i.v. injections of (1) ACTH analogue (tetracosactrin), (2) GnRH analogue (buserelin) and (3) saline solution on separate occasions at 11, 13, 15 and 18 months of age. Relative to prechallenge plasma values, ACTH administration resulted in a 4-10-fold increase in mean plasma progesterone concentrations, but only a 10-45% increase in mean plasma cortisol concentrations, within 40 min for entire and ovariectomized does during the prepubertal periods (11, 13 and 15 months) and for ovariectomized does during the post-pubertal period (18 months). Post-pubertal entire does exhibited high mean basal plasma progesterone concentrations (3-4 ng/ml) indicating a luteal source of secretion, with the ACTH-induced progesterone response being additive to the luteal progesterone but of similar magnitude to responses in the ovariectomized does. There was no significant ACTH challenge effect on mean plasma LH concentrations for entire or ovariectomized does at all ages. GnRH administration had no significant effects on mean plasma concentrations of progesterone and cortisol of entire and ovariectomized does, although there was a small increase in mean plasma progesterone values in post-pubertal does that may have reflected a luteal response to GnRH (via LH). GnRH challenge resulted in marked increases in mean plasma LH concentrations but the response patterns were different for the 2 types of does, being more rapid and of higher magnitude for ovariectomized does.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two experiments were conducted to determine the responsiveness of salivary and plasma cortisol to acute (i.v.), depot (i.m.) and chronic (repeated i.m.) adrenocorticotropin (ACTH) administration in swine. In Experiment 1, barrows (castrated pigs) were assigned to one of three injection treatments: (1) saline i.m. (SHAM1, n=2); (2) 0.75 IU/kg BW ACTH in saline i.v. (ACUTE, n=2); (3) 2.25 IU/kg BW ACTH in gel i.m. (DEPOT, n=3). Total cortisol concentrations were determined for concurrent saliva and blood samples. Correlations between salivary and plasma cortisol within treatments were: SHAM1, r=0.60; ACUTE, r=0.58; DEPOT, r=0.79. In Experiment 2, barrows were assigned to one of two injection treatments: (1) gel i.m. (SHAM2, n=3); (2) 2.25 IU/kg BW ACTH in gel i.m. (CHRONIC, n=4). The injections occurred every 6 h for a total of eight injections. Concurrent saliva and blood samples were obtained every 3 h for 72 h followed by an increasing sampling interval until day 6. Overall correlations between salivary and plasma cortisol were: SHAM2, r=0.30 and CHRONIC, r=0.61. Experiment 1 found that the relationship between salivary and plasma cortisol was stronger during longer (DEPOT) than shorter (ACUTE) ACTH stimulation. Experiment 2 found a strong relationship between the two measurements during chronic ACTH stimulation, but that relationship weakened after ACTH stimulation ceased.  相似文献   

4.
Previously, low stepwise infusions of cortisol in resting adrenalectomized dogs (plateaux less than or equal to 6 micrograms/dL) were shown to reduce ACTH secretion only after 20 min. In the present study, large, steep-sloped cortisol signals were used to try to evoke faster feedback. Adrenalectomized male mongrel dogs were maintained on exogenous steroids until 48 h before the experiment. Of the 23 experiments on 15 dogs (under light pentobarbital anesthesia), 12 were on resting dogs, 7 on dogs stressed by variable insulin infusion (keeping plasma glucose at 18-40 mg/dL), and 4 stressed as above but with 4 h of low cortisol infusion (plasma congruent to 5 micrograms/dL) before applying the feedback signal. After a 50-min control period, a 30-min feedback period was initiated by one of two i.v. cortisol signals: (a) injection of 0.3 mg/kg or (b) infusion of 46 micrograms kg-1 min-1. Both raised plasma cortisol above physiological limits (within 2 and 6 min, respectively). In each experiment, 23 timed venous blood samples were assayed for plasma ACTH and cortisol. ACTH secretion rates were calculated continuously using a validated single-compartment method. Results from both types of cortisol signals were indistinguishable, and were thus pooled. In the unstressed dogs, control-period ACTH secretion of 0.97 +/- 0.12 mU kg-1 min-1 showed no significant decline due to the feedback signal for 20.3 +/- 1.4 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In spontaneously hypertensive rats (SHR) and their normotensive Wistar-Kyoto controls (WKY), prolonged intravenous administration of angiotensin II (AII, 0.2 microgram X kg-1 X min-1 for 3h) resulted in similar increases in arterial blood pressure. Heart rate decreased in WKY and increased in SHR. At the end of the infusion, blood pressure dropped substantially in SHR, but not in WKY: at 5 h after AII withdrawal, blood pressure in SHR had fallen from a control value of 172 +/- 3.3 to 146 +/- 3.9 mmHg (p less than 0.01), whereas pressure in WKY had fallen from 116 +/- 3.0 to 107 +/- 4.2 mmHg (statistically non significant). Thus, pressure at 5 h after AII withdrawal was still substantially higher (p less than 0.01) in the SHR than in the WKY. The results demonstrate that the fall in blood pressure following withdrawal of a prolonged infusion of AII in SHR is much less than that reported to occur following withdrawal of a prolonged infusion of vasopressin (AVP) in SHR.  相似文献   

6.
There is increasing evidence that neuropeptide Y (NPY) affects the release of pituitary hormones, including adrenocorticotropic hormone (ACTH). The present study was designed to clarify the mechanism by which NPY activates the hypothalamic-pituitary-adrenal (HPA) axis in the dog. Mongrel dogs were equipped with a chronic cannula allowing intra-third (i.t.v.) or intra-lateral (i.l.v.) cerebroventricular administration. A 1.19 nmol, i.t.v. dose of NPY produced as great an ACTH and cortisol response as did equimolar ovine corticotropin releasing factor (CRF). This action of NPY was dose-dependent and shared by peptide YY (PYY) and pancreatic polypeptide (PP), other members of the PP family peptide. Intravenously (i.v.) administered NPY (1.19-11.9 nmol) was much less potent than i.v. CRF in stimulating ACTH and cortisol secretion. However, i.v. NPY significantly increased plasma ACTH and cortisol concentrations, raising the possibility that NPY may modulate the activity of corticotrophs. We have next investigated the possible relationship between NPY and CRF on the HPA axis. Pretreatment with a novel CRF antagonist, alpha-helical CRF9-41 (130.9 nmol i.t.v. or 261.8 nmol i.v.), partly but significantly attenuated the ACTH and cortisol responses to i.t.v. NPY (1.19 nmol). Furthermore, adding a subthreshold dose of i.t.v. NPY (0.119 nmol) to i.t.v. CRF (1.19 nmol) or i.v. NPY (2.38 nmol) to i.v. CRF (0.595 nmol) resulted in the potentiation of CRF-induced ACTH secretion. These results indicate that NPY may activate the HPA axis in concert with CRF probably at hypothalamic and/or pituitary levels. The present findings that NPY evokes ACTH secretion and potentiates the effectiveness of CRF as a secretagogue, together with high concentrations of NPY in the hypothalamus and pituitary portal blood, suggest that NPY is involved in the multihormonal control of ACTH release.  相似文献   

7.
Earlier observations in our laboratory indicated that i.v. infusion of human/rat corticotropin-releasing hormone (hCRH) suppresses pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release in ovariectomized rhesus monkeys. Since cortisol secretion increased significantly as well, it was not possible to exclude the possibility that this inhibitory effect of hCRH on gonadotropins was related to the activation of the pituitary/adrenal axis. The purpose of the present study was to determine the role of pituitary/adrenal activation in the effect of hCRH on LH and FSH secretion. We compared the effects of 5-h i.v. infusions of hCRH (100 micrograms/h, n = 7) and of human adrenocorticotropic hormone (ACTH) (1-24) (5 micrograms/h, n = 3; 10 micrograms/h, n = 3, 20 micrograms/h, n = 3) to ovariectomized monkeys on LH, FSH, and cortisol secretion. As expected, during the 5-h ACTH infusions, cortisol levels increased by 176-215% of baseline control, an increase similar to that observed after CRH infusion (184%). However, in contrast to the inhibitory effect observed during the CRH infusion, LH and FSH continued to be released in a pulsatile fashion during the ACTH infusions, and no decreases in gonadotropin secretion were observed. The results indicated that increases in ACTH and cortisol did not affect LH and FSH secretion and allowed us to conclude that the rapid inhibitory effect of CRH on LH and FSH pulsatile release was not mediated by activation of the pituitary/adrenal axis.  相似文献   

8.
The effect of PGE2 on ACTH and cortisol responses to CRH was studied in 6 healthy men who received CRH i.v. during either saline or PGE2 infusions which were started 60 min. before testing. ACTH and cortisol responses to CRH were greater during PGE2 infusion compared to the control study. The results indicate that PGE2 positively modulates CRH-induced ACTH secretion.  相似文献   

9.
Experiment I: Hyperadrenal states were induced in intact heifers (N = 3) or adrenalectomized (ADRX) heifers (N = 3) by constant infusion of ACTH (20.8 micrograms, 1-24 ACTH/h) or hydrocortisone succinate (HS) (30 mg/h), respectively. Control infusions consisted of the saline vehicle. All infusions began on Day 2 of a normal estrous cycle. Exogenous gonadotropin releasing hormone (GnRH) was given as a 100-micrograms bolus i.v. on Days 7, 9, and 11 (intact) or 5, 7, and 9 (ADRX) of the cycle. In intact heifers, the cumulative luteinizing hormone (LH) response was reduced (P less than 0.05) by the ACTH treatment. In ADRX heifers, the HS treatment did not alter the cumulative response but did alter the qualitative response with a time X treatment interaction (P less than 0.01). The LH response in the HS-ADRX animals had a slower onset and lower peak concentrations with a more prolonged response. Experiment II: Dispersed bovine pituitary cells were prepared and incubated at concentrations of 2 X 10(6) viable cells in 2.0 ml per dish. Cells were exposed to cortisol at concentrations of 0.01, 0.10, 0.21 and 1.03 X 10(-6) M for time periods of 8, 14, 20 or 26 h for basal LH secretion studies and 10, 16, 22 and 28 h for GnRH-stimulated LH secretion. Both dosage of cortisol and length of exposure had a depressing effect on basal LH release. The cortisol pretreatment also decreased (P less than 0.001) the LH release following addition of GnRH (8.5 X 10(-8) M) in cultures at all dosages and exposure times of cortisol. However, there was no decrease in LH or protein content of cells. These experiments indicate a direct action of cortisol on the pituitary gland to depress both basal and stimulated LH release.  相似文献   

10.
The hypothesis that prostaglandins stimulate fetal adrenocortical activity via a central site of action within the fetal brain was tested in chronically catheterized fetal sheep. At day 120 gestation (term = 145 days) fetal sheep were surgically prepared with catheters in the lateral cerebral ventricle, jugular vein and carotid artery and experiments began five days later. Intravenous (i.v.) infusion of prostaglandin E2 (30 or 120 micrograms.h-1) caused a significant dose-related increase in fetal plasma concentrations of ACTH. Despite this increase in ACTH, cortisol was only stimulated after the highest dose of prostaglandin E2. Intracerebroventricular (i.c.v.) infusion of PGE2 (30 micrograms.h-1) also stimulated ACTH secretion although the peak response was delayed and considerably less compared with the same dose administered intravenously. Prostaglandin F2 alpha administered i.v. or i.c.v. had no effect on circulating concentrations of either ACTH or cortisol. These data provide evidence that prostaglandin E2 can stimulate fetal ACTH secretion by acting in the fetal brain. Furthermore, the greater release of ACTH after i.v. compared with i.c.v. prostaglandin E2 suggests that a site of action other than the brain, such as the pituitary gland, may also be important. These results provide further evidence that during late gestation circulating prostaglandins can act to stimulate fetal pituitary-adrenal maturation.  相似文献   

11.
Experiments were conducted to compare the blood pressure and heart rate responses of conscious rats given intracerebroventricular (ICV) injections of adrenocorticotropin (ACTH 1-24) and corticotropin releasing factor (CRF). Under sodium pentobarbital anaesthesia, rats were implanted with a stainless-steel cannula into the lateral cerebral ventricle and had their right femoral artery and vein cannulated. Upon recovery (24-48 hr later) conscious, unrestrained rats were given ICV injections (total volume 5 microliter by gravity flow) of sterile saline, ACTH (1-24) (0.85 and 1.7 nmoles) or CRF (0.55 and 1.1 nmoles) and blood pressure and heart rate were monitored over the next 2 hr (from the abdominal aorta via the femoral arterial catheter). Both ACTH and CRF caused mean arterial pressure (MAP) to increase, which was paralleled with increases in mean heart rate (MHR). Moreover, these elevations in MAP and MHR were temporally associated with excessive grooming (for ACTH) and locomotor activity (for CRF), which occurred before and lasted as long as MAP and MHR were enhanced. Intravenous (IV) pretreatment whereby naloxone was given 10 min before ICV administration of ACTH (1.7 nmoles) or CRF (1.1 nmoles), showed that naloxone blocked the behavioral, pressor and tachycardic effects of both ACTH and CRF. The results demonstrate that the pressor, tachycardic and locomotor effects evoked in conscious rats by ICV administration of ACTH or CRF are antagonized by naloxone and that their hemodynamic changes may, in part, be mediated by prior behavioral activation.  相似文献   

12.
Initial studies were undertaken to investigate the effects of prolonged administration of angiotensin II (AII), 1 micrograms twice daily, via the lateral ventricles to mongrel dogs on arterial blood pressure and to determine if sodium intake was essential for the development of hypertension. Increasing AII levels in the cerebrospinal fluid for a prolonged period of time produced a sustained hypertensive state only in those dogs in which the daily intake of sodium was increased. The hypertension appeared to be due to an increase in total peripheral resistance. Central administration of AII increased both fluid intake and urine output. In order to assess the hemodynamic effects of increasing endogenous brain AII, renin was injected in doses of 0.025, 0.05, 0.1 and 0.3 units (from porcine kidney) into the lateral ventricles of chronically instrumented awake dogs. Hemodynamic variables were recorded prior to and one and 2 h after the central administration of renin. Renin produced a dose-dependent increase in mean arterial pressure with no significant change in heart rate or carotid, coronary and renal blood flow velocities. Chronic intraventricular administration of renin, 0.15 units twice daily to awake instrumented dogs receiving saline as the drinking fluid, markedly increased the daily intake of saline and increased diastolic and systolic blood pressure without increasing heart rate or carotid, coronary or renal blood flow velocities. There appears to be a direct significant relationship between the increase in mean blood pressure due to the intraventricular administration of renin and the volume of saline consumed.  相似文献   

13.
The time course of plasma adrenocorticotrophin (ACTH), adrenal cyclic AMP, adrenal corticosterone, and plasma corticosterone was measured in male Sprague-Dawley rats whose endogenous release of ACTH had been blocked (1) following rapid injections of 100 and 300 ng ACTH/100 g body weight, i.v., (2) during prolonged infusions at rates of 1, 2, and 4 ng ACTH/min per 100 g body weight, and (3) after termination of 30-min infusions at rates extending from 0.06 to 8 ng ACTH/min per 100 g body weight. Following injections, the time course of the variables is similar to the one simulated from our models of adrenal cortical secretion, including the simulation of an intermediate variable of our models of the adrenal cortex cell which was presumed to correspond to cyclic AMP. However, during prolonged infusions there is an unexpected overshoot of adrenal cyclic AMP content whereas adrenal and plasma corticosterone concentrations rise to a steady-state value without overshoot. The total amount of cyclic AMP gradually increases following the three increasing infusion rates of ACTH whereas similar levels of plasma corticosterone concentrations are reached at steady state; therefore the saturation of the adrenal cortical secretion is due to a step ulterior to cyclic AMP formation in the steroidogenesis. After 30-min infusions, plasma corticosterone concentration reaches its maximal value following a rate of ACTH input which evokes only a 4-fold increase in adrenal cyclic AMP content; however, there is a 250-fold increase of adrenal cyclic AMP with respect to control value following the higher rates of infusion of ACTH.  相似文献   

14.
In this study, a model of the clonidine withdrawal syndrome in normotensive rats was used to investigate the mechanisms and sites of the cardiovascular responses associated with this withdrawal. Clonidine (400 micrograms.kg-1.day-1), an alpha 2-adrenergic receptor agonist, was administered to rats via indwelling osmotic minipumps for 7 days. Withdrawal was precipitated by an intravenous injection of the alpha 2-adrenergic receptor antagonist yohimbine under alpha-chloralose anaesthesia, and the blood pressure and heart rate responses were recorded. Yohimbine (0.25, 0.50, and 1.0 mg/kg i.v.) in clonidine-treated rats provoked an immediate rise in blood pressure and heart rate. Similar injections in saline-treated rats produced slight hypotension and modestly increased the heart rate. Intracerebroventricular (i.c.v.) yohimbine injection (30 or 120 micrograms/kg in 10 microL volume) failed to elicit signs of withdrawal in clonidine-treated animals, but a subsequent intravenous injection of yohimbine (0.5 mg/kg) provoked brisk signs of withdrawal. hexamethonium (2 mg/kg) pretreatment did not abolish the increase in the heart rate, but it delayed the blood pressure increase. Pretreatment with atropine sulfate (1 mg/kg) did not block the yohimbine-induced increase in heart rate or blood pressure. This study demonstrates that yohimbine can effectively produce cardiovascular signs of withdrawal in rats chronically exposed to clonidine. The lack of i.c.v. yohimbine suggests that the antagonist-precipitated withdrawal may not have a central origin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The metabolic clearance rate (MCR) for ACTH in adult dogs was previously shown not to vary significantly with varying plasma ACTH concentrations or among dogs. This is confirmed here for pups aged 1-7 days. Hence, ACTH secretion rates can be continuously calculated from a continuous function of plasma ACTH vs. time. Each of seven adult dogs under Nembutal anesthesia received two or three intravenous (i.v.) injections of histamine with increasing doses. The first injections in each dog ranged from 7 to 50 mug/kg, while the last dose was 62-108 mug/kg. A total of 16 injections were given. Twelve pups (two litters of six) aged 1-7 days each received one injection of histamine of 76-116 mug/kg (i.v.). ACTH concentrations in plasma were determined by an adrenal cell suspension bioassay before, and 6 times after each injection. Nine pups also underwent determinations of their MCR for ACTH, with plateau concentrations determined at three times during an ACTH infusion. Continuous curves of ACTH secretion rates were calculated for all 28 histamine injections, showing that all except the 1-day-old pups secrete considerable ACTH when stressed. Compared to adult dogs, the pups show lower secretion rate peaks and shorter periods of rapid secretion. Changes in plasma glucocorticoids also suggest that the adrenal cortex of newborn dogs can respond to ACTH by increased glucocorticoid secretion.  相似文献   

16.
Although exogenous angiotensin II (AII) exerts a multitude of effects on the central nervous system, there is little evidence supporting a physiological role for the endogenously produced peptide. Some investigators have tested the hypothesis that AII is physiologically active in the brain with intracerebral infusions of blockers of the renin-angiotensin system. If blocker infusions produce effects that are opposite to exogenous AII infusions, it is evidence supporting a physiological role for endogenously generated angiotensin. Previous work has demonstrated that intraventricular infusion of AII elicits thirst and stimulates antidiuretic hormone and ACTH release. Intracerebral administration of AII also suppresses aldosterone secretion. Experiments that employed the blockers saralasin, a competitive inhibitor of AII, and SQ 20881, a converting enzyme blocker, are presented; results suggest that endogenous AII is involved in the control of thirst and peripheral hormone levels. Infusion of the blockers in the ventricular system led to changes in peripheral hormone concentrations opposite to that observed following infusions of AII.  相似文献   

17.
The effects of naloxone and morphine on mean arterial blood pressure (MBP) and heart rate (HR) responses to angiotensin II (AII) were studied in conscious cynomolgus monkeys. Graded doses of AII (0.3, 1 and 3 micrograms/min for 8-10 min) were infused i.v. 20 min apart, preceded by an i.v. injection of either naloxone (1, 3 or 10 mg/kg), morphine (0.3, 1 or 3 mg/kg) or saline. Pretreatment with naloxone (10 mg/kg) attenuated the pressor response to AII (0.3 or 1 microgram/min) by 25-50% but did not alter similar pressor responses to phenylephrine. Pretreatment with morphine had little or no effect on MBP or HR responses to AII.  相似文献   

18.
The effects of 100 micrograms, i.m. of the analog ACTH 1-17 administered at 0800 and 1800 on the secretion of cortisol, aldosterone and testosterone have been studied in normal subjects: 8 male and 8 female. The group as a whole and the males had significantly greater absolute and percent increments in plasma cortisol after administration at 1800. In the females, there was only a greater percent increment in cortisol after the evening administration. The heptadecapeptide always significantly stimulated serum aldosterone, with no difference between the two times of administration. In the females, ACTH 1-17 significantly stimulated testosterone, with a more protracted secretion after the evening administration. In the males, there was always a significant testosterone decrease after the administration of the drug, with no difference between morning and evening. In conclusion, 100 micrograms i.m. of the analog ACTH 1-17 stimulates cortisol secretion more when given during the circadian nadir of plasma cortisol, but only in men. ACTH 1-17 increases testosterone in women and decreases it in men, whereas it seems to increase aldosterone secretion in both sexes.  相似文献   

19.
Early sleep in humans is characterized by a distinct suppression of pituitary-adrenal activity coinciding with enhanced activity of the somatotropic axis. Here, we tested in awake humans the hypothesis of an inhibiting influence of hypothalamic growth hormone-releasing hormone (GHRH) on pituitary-adrenal activity. For this purpose, pituitary-adrenal activity was stimulated in 10 men through a standard insulin-hypoglycemia-test (IHT) and in another 10 men through combined administration of CRH/vasopressin. Stimulation was performed in each man on three conditions following pretreatment with Placebo and GHRH administered intravenously (50 microg) or intranasally (300 microg) 1 h before. GH, ACTH and cortisol as well as blood pressure and heart rate were measured repeatedly. Contrary to expectations, pretreatment with GHRH did not suppress but enhanced secretion of cortisol upon insulin-induced hypoglycemia regardless of the route of GHRH pretreatment (p<0.05). In contrast, GHRH did not facilitate cortisol release after stimulation with CRH/vasopressin. Changes in ACTH remained inconsistent. Plasma levels of GH increased significantly after i.v. GHRH application, but remained unchanged after the intranasal administration. Blood pressure and heart rate were not influenced by the treatments. Results indicate facilitating effects of GHRH mediated at a suprapituitary (i.e. hypothalamic) level as suggested by restriction of the effect to the hypoglycemia-induced cortisol release with no effects after pituitary stimulation with CRH/vasopressin.  相似文献   

20.
Four orchidectomized rhesus monkeys (3-3.5 yr of age) were treated for 62 days with daily i.m. injections of hydrocortisone acetate (HCA) at a dose of 10-20 mg/(kg BW X day), and blood samples were obtained daily or every other day before, during, and after treatment. Hydrocortisone acetate injections resulted in a progressive rise in mean plasma cortisol from basal concentrations of 17-35 micrograms/100 ml prior to initiation of steroid treatment to approximately 150 micrograms/100 ml 5 wk later. When serum cortisol concentrations reached 100 micrograms/100 ml, 3-4 wk after the initiation of HCA treatment, circulating luteinizing hormone (LH) and follicle-stimulating hormone (FSH) began to decline, reaching nondetectable concentrations 35 days later. Withdrawal of HCA resulted in a return in plasma cortisol concentrations to pretreatment control levels, which was associated with a complete restoration of gonadotropin secretion. In 2 animals, administration of an intermittent i.v. infusion of gonadotropin-releasing hormone (GnRH) (0.1 micrograms/min for 3 min once every hour), which appears to stimulate the gonadotropes in a physiologic manner, reversed the cortisol-induced inhibition of gonadotropin secretion, restoring circulating LH and FSH concentrations to within 80-100% of control. These results suggest that, in the rhesus monkey, the major site of the inhibitory action of cortisol on gonadotropin release resides at a suprapituitary level and is mediated by interruption of hypothalamic GnRH release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号