首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deamination of cytosine (C), 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) occurs spontaneously in mammalian DNA with several hundred deaminations occurring in each cell every day. The resulting potentially mutagenic mispairs of uracil (U), thymine (T) or 5-hydroxymethyluracil (hmU) with guanine (G) are substrates for repair by various DNA glycosylases. Here, we show that targeted inactivation of the mouse Smug1 DNA glycosylase gene is sufficient to ablate nearly all hmU-DNA excision activity as judged by assay of tissue extracts from knockout mice as well as by the resistance of their embryo fibroblasts to 5-hydroxymethyldeoxyuridine toxicity. Inactivation of Smug1 when combined with inactivation of the Ung uracil-DNA glycosylase gene leads to a loss of nearly all detectable uracil excision activity. Thus, SMUG1 is the dominant glycosylase responsible for hmU-excision in mice as well as the major UNG-backup for U-excision. Both Smug1-knockout and Smug1/Ung-double knockout mice breed normally and remain apparently healthy beyond 1 year of age. However, combined deficiency in SMUG1 and UNG exacerbates the cancer predisposition of Msh2(-/-) mice suggesting that when both base excision and mismatch repair pathways are defective, the mutagenic effects of spontaneous cytosine deamination are sufficient to increase cancer incidence but do not preclude mouse development.  相似文献   

2.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

3.
Longerich S  Meira L  Shah D  Samson LD  Storb U 《DNA Repair》2007,6(12):1764-1773
Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.  相似文献   

4.
DNA deaminases of the Aid/Apobec family convert cytosine into uracil and play key roles in acquired and innate immunity. The epigenetic modification by methylation of cytosine in CpG dinucleotides is also mutagenic, but this is thought to occur by spontaneous deamination. Here we show that Aid and Apobec1 are 5-methylcytosine deaminases resulting in a thymine base opposite a guanine. Their action can thus lead to C --> T transition mutations in methylated DNA, or in conjunction with repair of the T:G mismatch, to demethylation. The Aid and Apobec1 genes are located in a cluster of pluripotency genes including Nanog and Stella and are co-expressed with these genes in oocytes, embryonic germ cells, and embryonic stem cells. These results suggest that Aid and perhaps some of its family members may have roles in epigenetic reprogramming and cell plasticity. Transition in CpG dinucleotides is the most frequent mutation in human genetic diseases, and sequence context analysis of CpG transitions in the APC tumor suppressor gene suggests that DNA deaminases may play a significant role in tumor etiology.  相似文献   

5.
Studies of trpA reversions revealed that G:C leads to A:T transitions were stimulated about 30-fold in E. coli ung mutants, whereas other base substitutions were not affected. A dUTPase (dut) mutation, which increases the incorporation of uracil into DNA in place of thymine, had no significant effect on the rate of G:C leads to A:T transitions. The results support the proposal that the glycosylase functions to reduce the mutation rate in wild-type cells by acting in the repair of DNA cytosine residues that have undergone spontaneous deamination to uracil. Further support was provided by the finding that when lambda bacteriophages were treated with bisulfite, an agent known to produce cytosine deamination, the frequency of clear-plaque mutants was increased an additional 20-fold by growth on an ung host. Bisulfite-induced mutations of the cellular chromosome, however, were about equal in ung+ and ung strains; it was found that during the treatment of ung+ cells with bisulfite, the glycosylase was inactivated.  相似文献   

6.
Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations in the Ig locus after replication. When uracil-DNA glycosylase (UNG2) removes uracil, error-prone translesion synthesis over the abasic site causes other mutations in the Ig locus. Together, these processes are central to somatic hypermutation (SHM) that increases immunoglobulin diversity. AID and UNG2 are also essential for generation of strand breaks that initiate class switch recombination (CSR). Patients lacking UNG2 display a hyper-IgM syndrome with recurrent infections, increased IgM, strongly decreased IgG, IgA and IgE and skewed SHM. UNG2 is also involved in innate immune response against retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans.  相似文献   

7.
In Escherichia coli and human cells, many sites of cytosine methylation in DNA are hot spots for C to T mutations. It is generally believed that T.G mismatches created by the hydrolytic deamination of 5-methylcytosines (5meC) are intermediates in the mutagenic pathway. A number of hypotheses have been proposed regarding the source of the mispaired thymine and how the cells deal with the mispairs. We have constructed a genetic reversion assay that utilizes a gene on a mini-F to compare the frequency of occurrence of C to T mutations in different genetic backgrounds in exponentially growing E. coli. The results identify at least two causes for the hot spot at a 5meC: (1) the higher rate of deamination of 5meC compared to C generates more T.G than uracil.G (U.G) mismatches, and (2) inefficient repair of T.G mismatches by the very short-patch (VSP) repair system compared to the repair of U. G mismatches by the uracil-DNA glycosylase (Ung). This combination of increased DNA damage when the cytosines are methylated coupled with the relative inefficiency in the post-replicative repair of T.G mismatches can be quantitatively modeled to explain the occurrence of the hot spot at 5meC. This model has implications for mutational hot and cold spots in all organisms.  相似文献   

8.
Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytosine deaminase (AID). The uracil, and potentially neighboring bases, are processed by error-prone base excision repair and mismatch repair. Deficiencies in Ung, Msh2, or Msh6 affect SHM and CSR. To determine whether Msh2/Msh6 complexes which recognize single-base mismatches and loops were the only mismatch-recognition complexes required for SHM and CSR, we analyzed these processes in Msh6(-/-)Ung(-/-) mice. SHM and CSR were affected in the same degree and fashion as in Msh2(-/-)Ung(-/-) mice; mutations were mostly C,G transitions and CSR was greatly reduced, making Msh2/Msh3 contributions unlikely. Inactivating Ung alone reduced mutations from A and T, suggesting that, depending on the DNA sequence, varying proportions of A,T mutations arise by error-prone long-patch base excision repair. Further, in Msh6(-/-)Ung(-/-) mice the 5' end and the 3' region of Ig genes was spared from mutations as in wild-type mice, confirming that AID does not act in these regions. Finally, because in the absence of both Ung and Msh6, transition mutations from C and G likely are "footprints" of AID, the data show that the activity of AID is restricted drastically in vivo compared with AID in cell-free assays.  相似文献   

9.
Deamination of cytosine in DNA results in mutagenic U:G mispairs, whereas incorporation of dUMP leads to U:A pairs that may be genotoxic directly or indirectly. In both cases, uracil is mainly removed by a uracil-DNA glycosylase (UDG) that initiates the base excision repair pathway. The major UDGs are mitochondrial UNG1 and nuclear UNG2 encoded by the UNG-gene, and nuclear SMUG1. TDG and MBD4 remove uracil from special sequence contexts, but their roles remain poorly understood. UNG2 is cell cycle regulated and has a major role in post-replicative removal of incorporated uracils. UNG2 and SMUG1 are both important for prevention of mutations caused by cytosine deamination, and their functions are non-redundant. In addition, SMUG1 has a major role in removal of hydroxymethyl uracil from oxidized thymines. Furthermore, UNG-proteins and SMUG1 may have important functions in removal of oxidized cytosines, e.g. isodialuric acid, alloxan and 5-hydroxyuracil after exposure to ionizing radiation. UNG2 is also essential in the acquired immune response, including somatic hypermutation (SHM) required for antibody affinity maturation and class switch recombination (CSR) mediating new effector functions, e.g. from IgM to IgG. Upon antigen exposure B-lymphocytes express activation induced cytosine deaminase that generates U:G mispairs at the Ig locus. These result in GC to AT transition mutations upon DNA replication and apparently other mutations as well. Some of these may result from the generation of abasic sites and translesion bypass synthesis across such sites. SMUG1 can not complement UNG2 deficiency, probably because it works very inefficiently on single-stranded DNA and is down-regulated in B cells. In humans, UNG-deficiency results in the hyper IgM syndrome characterized by recurrent infections, lymphoid hyperplasia, extremely low IgG, IgA and IgE and elevated IgM. Ung(-/-) mice have a similar phenotype, but in addition display dysregulated cytokine production and develop B cell lymphomas late in life.  相似文献   

10.
Uracil-DNA glycosylase activity was found in Streptococcus pneumoniae, and the enzyme was partially purified. An ung mutant lacking the activity was obtained by positive selection of cells transformed with a plasmid containing uracil in its DNA. The effects of the ung mutation on mutagenic processes in S. pneumoniae were examined. The sequence of several malM mutations revertible by nitrous acid showed them to correspond to A.T----G.C transitions. This confirmed a prior deduction that nitrous acid action on transforming DNA gave only G.C----A.T mutations. Examination of malM mutant reversion frequencies in ung strains indicated that G.C----A.T mutation rates generally were 10-fold higher than in wild-type strains, presumably owing to lack of repair of deaminated cytosine residues in DNA. No effect of ung on mutation avoidance by the Hex mismatch repair system was observed, which means that uracil incorporation and removal from nascent DNA cannot be solely responsible for producing strand breaks that target nascent DNA for correction after replication. One malM mutation corresponding to an A.T----G.C transition showed a 10-fold-higher spontaneous reversion frequency than other such transitions in a wild-type background. This "hot spot" was located in a directly repeated DNA sequence; it is proposed that transient slippage to the wild-type repeat during replication accounts for the higher reversion frequency.  相似文献   

11.
Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.  相似文献   

12.
Uracil in DNA arises by misincorporation of dUMP during replication and by hydrolytic deamination of cytosine. This common lesion is actively removed through a base excision repair (BER) pathway initiated by a uracil DNA glycosylase (UDG) activity that excises the damage as a free base. UDGs are classified into different families differentially distributed across eubacteria, archaea, yeast, and animals, but remain to be unambiguously identified in plants. We report here the molecular characterization of AtUNG (Arabidopsis thaliana uracil DNA glycosylase), a plant member of the Family-1 of UDGs typified by Escherichia coli Ung. AtUNG exhibits the narrow substrate specificity and single-stranded DNA preference that are characteristic of Ung homologues. Cell extracts from atung−/− mutants are devoid of UDG activity, and lack the capacity to initiate BER on uracil residues. AtUNG-deficient plants do not display any apparent phenotype, but show increased resistance to 5-fluorouracil (5-FU), a cytostatic drug that favors dUMP misincorporation into DNA. The resistance of atung−/− mutants to 5-FU is accompanied by the accumulation of uracil residues in DNA. These results suggest that AtUNG excises uracil in vivo but generates toxic AP sites when processing abundant U:A pairs in dTTP-depleted cells. Altogether, our findings point to AtUNG as the major UDG activity in Arabidopsis.  相似文献   

13.
14.
15.
Uracil–DNA glycosylase (Ung) is a DNA repair enzyme that excises uracil bases from DNA, where they appear through deamination of cytosine or incorporation from a cellular dUTP pool. DNA repair enzymes often use one-dimensional diffusion along DNA to accelerate target search; however, this mechanism remains poorly investigated mechanistically. We used oligonucleotide substrates containing two uracil residues in defined positions to characterize one-dimensional search of DNA by Escherichia coli Ung. Mg2+ ions suppressed the search in double-stranded DNA to a higher extent than K+ likely due to tight binding of Mg2+ to DNA phosphates. Ung was able to efficiently overcome short single-stranded gaps within double-stranded DNA. Varying the distance between the lesions and fitting the data to a theoretical model of DNA random walk, we estimated the characteristic one-dimensional search distance of ∼100 nucleotides and translocation rate constant of ∼2 × 106 s−1.  相似文献   

16.
Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids   总被引:5,自引:0,他引:5  
Genomes and their precursor nucleotides are highly exposed to reactive oxygen species, which are generated both as byproducts of oxygen respiration or molecular executors in the host defense, and by environmental exposure to ionizing radiation and chemicals. To counteract such oxidative damage in nucleic acids, mammalian cells are equipped with three distinct enzymes. MTH1 protein hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-2'-deoxyguanosine triphosphate and 2-hydroxy-2'-deoxyadenosine triphosphate (2-OH-dATP), to the corresponding monophosphates. We observed increased susceptibility to spontaneous carcinogenesis in MTH1-null mice, which exhibit an increased occurrence of A:T-->C:G and G:C-->T:A transversion mutations. 8-Oxoguanine (8-oxoG) DNA glycosylase, encoded by the OGG1 gene, and adenine DNA glycosylase, encoded by the MUTYH gene, are responsible for the suppression of G:C to T:A transversions caused by the accumulation of 8-oxoG in the genome. Deficiency of these enzymes leads to increased tumorigenesis in the lung and intestinal tract in mice, respectively. MUTYH deficiency may also increase G:C to T:A transversions through the misincorporation of 2-OH-dATP, especially in the intestinal tract, since MUTYH can excise 2-hydroxyadenine opposite guanine in genomic DNA and the repair activity is selectively impaired by a mutation found in patients with autosomal recessive colorectal adenomatous polyposis.  相似文献   

17.
The generalized mismatch repair system of Streptococcus pneumoniae (the Hex system) can eliminate base pair mismatches arising in heteroduplex DNA during transformation or by DNA polymerase errors during replication. Mismatch repair is most likely initiated at nicks or gaps. The present work was started to examine the hypothesis that strand discontinuities arising after removal of uracil by uracil DNA-glycosylase (Ung) can be utilised as strand discrimination signals. We show that mismatch repair efficiency is enhanced 3- to 6-fold when using uracil-containing DNA as donor in transformation. In order to assess the contribution of Ung to nascent strand discrimination for postreplication mismatch repair, we developed a positive selection procedure to isolate S. pneumoniae Ung- mutants. We succeeded in isolating Ung- mutants using this procedure based on chromosomal integration of uracil-containing hybrid DNA molecules. Cloning and characterization of the ung gene was achieved. Comparison of spontaneous mutation rates in strains either proficient or deficient in mismatch and/or uracil repair gave no support to the hypothesis that Ung plays a major role in targeting the Hex system to neosynthesized DNA strands. However Ung activity is responsible for the increased efficiency of mismatch repair observed in transformation with uracil-containing DNA. In addition Ung is involved in repair of bisulfite-treated transforming DNA.  相似文献   

18.
DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPβ binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPβ binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.  相似文献   

19.
The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC–MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号