首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment with cytosine beta-D-arabinoside (AraC; 300 microM) induced a time-dependent accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein in nuclei purified from cultured cerebellar granule cells, with a concomitant degradation of lamin B1, a nuclear membrane protein and a substrate of CPP32/caspase-3. Moreover, Asp-Glu-Val-Asp-fluoromethyl ketone (DEVD-fmk), a CPP32-selective antagonist, dose-dependently suppressed AraC-induced apoptosis of these neurons. Nuclear accumulation of GAPDH protein was associated with a progressive decrease in the activity of uracil-DNA glycosylase (UDG), one of the nuclear functions of GAPDH. The nuclear dehydrogenase activity of GAPDH was initially increased after treatment and then decreased parallel to UDG activity. Six GAPDH isoforms were detected in the nuclei of AraC-treated cells. The more alkaline isoforms, 1-3, constituted the bulk of the nuclear GAPDH, and the remaining isoforms, 4-6, were the minor species. Levels of all six isoforms were increased after treatment with AraC for 16 h; a 4-h treatment increased levels of only isoforms 4 and 5. Thus, it appears that various GAPDH isoforms are differentially regulated and may have distinct apoptotic roles. Pretreatment with GAPDH antisense oligonucleotide blocked the nuclear translocation of GAPDH isoforms, and the latter process occurred concurrently with a decrease in cytosolic GAPDH isoforms. Sodium nitroprusside-induced NAD labeling of nuclear GAPDH showed a 60% loss of GAPDH labeling after AraC treatment, suggesting that the active site of GAPDH may be covalently modified, denatured, or improperly folded. The unfolded protein response elicited by denatured GAPDH may contribute to AraC-induced neuronal death.  相似文献   

2.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to interact with proteins containing the polyglutamine (polyQ) domain. The present study was undertaken to evaluate the potential contributions of the polyQ and polyproline (polyP) domains to the co-localization of mutant huntingtin (htt) and GAPDH. Overexpression of N-terminal htt (1-969 amino acids) with 100Q and 46Q (httl-969- 100Q and httl-969-46Q, mutant htt) in human mammary gland carcinoma MCF-7 cells formed more htt aggregates than that of httl-969-18Q (wild-type htt). The co-localization of GAPDH with htt aggregates was found in the cells expressing mutant but not wild-type htt. Deletion of the polyP region in the N-terminal htt had no effect on the co-localization of GAPDH and mutant htt aggregates. These results suggest that the polyQ domain, but not the polyP domain, plays a role in the sequestration of GAPDH to aggregates by mutant htt. This effect might contribute to the dysfunction of neurons caused by mutant htt in Huntington's disease.  相似文献   

3.
The in vitro interaction between the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and cytoskeletal elements is well documented. To verify this association within cells, the intracellular distribution of GAPDH under various metabolic conditions has been investigated in immunostained cells or cells expressing GAPDH as a GFP fusion protein. GAPDH was homogeneously distributed in the cytoplasm and no interaction of GAPDH with cytoskeletal elements, neither with microfilaments nor microtubules or intermediate filaments, was detectable. In living cells expressing GFP-GAPDH, stress fibres were excluded from the fluorescence. In contrast to proliferating cells, the cytoplasmic GAPDH of serum-depleted cells was not homogeneously distributed, but colocalised with stress fibres. The mechanism for stimulating this actin-binding affinity was independent of the NO-signalling pathway. The results support the idea of a specialised function for the interaction of GAPDH and cytoskeletal elements, rather than a general function, as e.g. microcompartmentalization of glycolytic enzymes.  相似文献   

4.
Polyglutamine domains are excellent substrates for tissue transglutaminase resulting in the formation of cross-links with polypeptides containing lysyl residues. This finding suggests that tissue transglutaminase may play a role in the pathology of neurodegenerative diseases associated with polyglutamine expansion. The glycolytic enzyme GAPDH previously was shown to tightly bind several proteins involved in such diseases. The present study confirms that GAPDH is an in vitro lysyl donor substrate of tissue transglutaminase. A dansylated glutamine-containing peptide was used as probe for labeling the amino-donor sites. SDS gel electrophoresis of a time-course reaction mixture revealed the presence of both fluorescent GAPDH monomers and high molecular weight polymers. Western blot analysis performed using antitransglutaminase antibodies reveals that tissue transglutaminase takes part in the formation of heteropolymers. The reactive amino-donor sites were identified using mass spectrometry. Here, we report that of the 26 lysines present in GAPDH, K191, K268, and K331 were the only amino-donor residues modified by tissue transglutaminase.  相似文献   

5.
Overexpression and subsequent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is involved in neuronal apoptosis induced by several stimuli in which GAPDH antisense oligonucleotides specifically block the increment (2 approximately 3 fold) of GAPDH mRNA contents occurring prior to neuronal death. However, these agents do not affect the basal, constitutive mRNA contents. This suggests that there may be distinct gene regulations for GAPDH mRNA expression. Herein, we cloned two types of promoter regions upstream of this gene; viz., #104 (1.02-kb) and #302 (2.46-kb). These fragments were inserted into the pGL3 luciferase reporter system and transiently transfected into cultured cerebellar neurons undergoing cytosine arabinonucleoside-induced apoptosis. The functional analysis of these constructs revealed that #104, but not #302, increased luciferase activity in response to the apoptotic stimulus. Deletion and replacement mutation analysis of the #104 fragment disclosed the promoter core harbored between the 154-bp and 84-bp domains (3.5-fold activity of the control). Furthermore, anti-dementia drugs (such as Cognex and Aricept) markedly depress the expression of this pro-apoptotic GAPDH promoter activity. Interestingly, immunocytochemical examination of human post-mortem materials from patients with Alzheimer's disease revealed nuclear aggregated GAPDH in neurons of the affected brain regions, implying an association with apoptotic cell death. The current findings indicate that induction of the pro-apoptotic protein GAPDH is genetically regulated at the level of promoter activation, and this protein may be an important molecular target for developing anti-apoptotic therapeutic agents in certain neurological illnesses.  相似文献   

6.
7.
Summary The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots.  相似文献   

8.
9.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH–Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.  相似文献   

10.
Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300 μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300 μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard.  相似文献   

11.
Protein kinase B (Akt) plays important roles in regulation of cell growth and survival, but while many aspects of its mechanism of action are known, there are potentially additional regulatory events that remain to be discovered. Here we detected a 36-kDa protein that was co-immunoprecipitated with protein kinase Bβ (Akt2) in OVCAR-3 ovarian cancer cells. The protein was identified to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by MALDI-TOF/TOF MS, and the interaction of Akt2 and GAPDH was verified by reverse immunoprecipitation. Our further study showed that Akt2 may suppress GAPDH-mediated apoptosis in ovarian cancer cells. Overexpression of GAPDH increased ovarian cancer cell apoptosis induced by H(2)O(2), which was inhibited by Akt2 overexpression and restored by the PI3K/Akt inhibitor wortmannin or Akt2 siRNA. Akt2 phosphorylated Thr-237 of GAPDH and decreased its nuclear translocation, an essential step for GAPDH-mediated apoptosis. The interaction between Akt2 and GAPDH may be important in ovarian cancer as immunohistochemical analysis of 10 normal and 30 cancerous ovarian tissues revealed that decreased nuclear expression of GAPDH correlated with activation (phosphorylation) of Akt2. In conclusion, our study suggests that activated Akt2 may increase ovarian cancer cell survival via inhibition of GAPDH-induced apoptosis. This effect of Akt2 is partly mediated by its phosphorylation of GAPDH at Thr-237, which results in the inhibition of GAPDH nuclear translocation.  相似文献   

12.
13.
A majority of cells obtain of transferrin (Tf) bound iron via transferrin receptor 1 (TfR1) or by transferrin receptor 2 (TfR2) in hepatocytes. Our study establishes that cells are capable of acquiring transferrin iron by an alternate pathway via GAPDH.These findings demonstrate that upon iron depletion, GAPDH functions as a preferred receptor for transferrin rather than TfR1 in some but not all cell types. We utilized CHO-TRVb cells that do not express TfR1 or TfR2 as a model system. A knockdown of GAPDH in these cells resulted in a decrease of not only transferrin binding but also associated iron uptake. The current study also demonstrates that, unlike TfR1 and TfR2 which are localized to a specific membrane fraction, GAPDH is located in both the detergent soluble and lipid raft fractions of the cell membrane. Further, transferrin uptake by GAPDH occurs by more than one mechanism namely clathrin mediated endocytosis, lipid raft endocytosis and macropinocytosis. By determining the kinetics of this pathway it appears that GAPDH-Tf uptake is a low affinity, high capacity, recycling pathway wherein transferrin is catabolised. Our findings provide an explanation for the detailed role of GAPDH mediated transferrin uptake as an alternate route by which cells acquire iron.  相似文献   

14.
New functions have been identified for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) including its role in neurodegenerative disease and in apoptosis. GAPDH binds specifically to proteins implicated in the pathogenesis of a variety of neurodegenerative disorders including the beta-amyloid precursor protein and the huntingtin protein. However, the pathophysiological significance of such interactions is unknown. In accordance with published data, our initial results indicated there was no measurable difference in GAPDH glycolytic activity in crude whole-cell sonicates of Alzheimer's and Huntington's disease fibroblasts. However, subcellular-specific GAPDH-protein interactions resulting in diminution of GAPDH glycolytic activity may be disrupted or masked in whole-cell preparations. For that reason, we examined GAPDH glycolytic activity as well as GAPDH-protein distribution as a function of its subcellular localization in 12 separate cell strains. We now report evidence of an impairment of GAPDH glycolytic function in Alzheimer's and Huntington's disease subcellular fractions despite unchanged gene expression. In the postnuclear fraction, GAPDH was 27% less glycolytically active in Alzheimer's cells as compared with age-matched controls. In the nuclear fraction, deficits of 27% and 33% in GAPDH function were observed in Alzheimer's and Huntington's disease, respectively. This evidence supports a functional role for GAPDH in neurodegenerative diseases. The possibility is considered that GAPDH:neuronal protein interaction may affect its functional diversity including energy production and as well as its role in apoptosis.  相似文献   

15.
16.
In addition to its classic glycolytic role, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated in many activities unrelated to glycolysis, such as membrane fusion, binding to host proteins and signal transduction. GAPDH can be the target of several modifications that allow incorporation to membranes and possible regulation of its activity; among these modifications is mono-ADP-ribosylation. This post-translational modification is important for the regulation of many cellular processes and is the mechanism of action of several bacterial toxins. In a previous study, we observed the extracellular ADP-ribosylation of a 37-kDa ameba protein. We report here that GAPDH and cysteine synthase A are the main ADP-ribosylated proteins in Entamoeba histolytica extracellular medium, GAPDH is secreted from ameba at 37 degrees C in a time-dependent manner, and its enzymatic activity is not inhibited by ADP-ribosylation. Extracellular GAPDH from ameba may play an important role in the survival of this human pathogen or in interaction with host molecules, as occurs in other organisms.  相似文献   

17.
The light-dependent subcellular translocation of rod alpha-transducin (GNAT-1, or rod Tα) has been well documented. In dark-adapted animals, rod Tα (rTα) is predominantly located in the rod outer segment (ROS) and translocates into the rod inner segment (RIS) upon exposure to the light. Neither the molecular participants nor the mechanism(s) involved in this protein trafficking are known. We hypothesized that other proteins must interact with rTα to affect the translocations. Using the MBP-rTα fusion pulldown assay, the yeast two-hybrid assay and the co-immunoprecipitation assay, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and rTα as interacting proteins. Immunoprecipitation also showed β-actin associates with rTα in the dark but not in the light. To further investigate the involvement of GAPDH in light-induced rod Tα translocation, GAPDH mRNA was knocked down in vivo by transient expression of siRNAs in rat photoreceptor cells. Under completely dark- and light-adapted conditions, the translocation of rTα was not significantly different within the 'GAPDH knock-down photoreceptor cells' compared to the non-transfected control cells. However, under partial dark-adaptation, rTα translocated more slowly in the 'GAPDH knock-down cells' supporting the conclusion that GAPDH is involved in rTα translocation from the RIS to the ROS during dark adaptation.  相似文献   

18.
Xie W  Shao N  Ma X  Ling B  Wei Y  Ding Q  Yang G  Liu N  Wang H  Chen K 《Life sciences》2006,79(19):1820-1827
Bacterial endotoxin or lipopolysaccharide (LPS) can trigger inflammatory responses and cause damage in organs such as liver and lungs when it is introduced into mammals, but the exact molecular events that mediate these responses have remained obscure. In this study, by using 2D gel electrophoresis and cDNA microarray analysis, we found that both protein and mRNA levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were significantly increased in rat liver and lungs after treatment with LPS. The results were further confirmed by Western blot and Northern blot. Given the known role of GAPDH in inducing apoptosis, our results suggest that LPS-induced GAPDH up-regulation may be an important mechanism responsible for the damage induced by Gram negative bacteria in mammalian tissue and GAPDH may be involved in the signaling pathway of LPS induced apoptosis. Our results also demonstrate that GAPDH is not a suitable internal control in gene expression studies, especially when bacterial infection is involved.  相似文献   

19.
NO generated by inducible NOS (iNOS) causes buildup of S-nitrosated GAPDH (SNO-GAPDH) in cells, which then inhibits further iNOS maturation by limiting the heme insertion step (Chakravarti, R., Aulak, K. S., Fox, P. L., and Stuehr, D. J. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009). We investigated what regulates this process utilizing a slow-release NO donor (NOC-18) and studying changes in cellular SNO-GAPDH levels during and after NO exposure. Culturing macrophage-like cells with NOC-18 during cytokine activation caused buildup of heme-free (apo) iNOS and SNO-GAPDH. Upon NOC-18 removal, the cells quickly recovered their heme insertion capacity in association with rapid SNO-GAPDH denitrosation, implying that these processes are linked. We then altered cell expression of thioredoxin-1 (Trx1) or S-nitrosoglutathione reductase, both of which can function as a protein denitrosylase. Trx1 knockdown increased SNO-GAPDH levels in cells, made heme insertion hypersensitive to NO, and increased the recovery time, whereas Trx1 overexpression greatly diminished SNO-GAPDH buildup and protected heme insertion from NO inhibition. In contrast, knockdown of S-nitrosoglutathione reductase expression had little effect on these parameters. Experiments utilizing C152S GAPDH confirmed that the NO effects are all linked to S-nitrosation of GAPDH at Cys-152. We conclude (i) that NO inhibition of heme insertion and its recovery can be rapid and dynamic processes and are inversely linked to the S-nitrosation of GAPDH and (ii) that the NO sensitivity of heme insertion can vary depending on the Trx1 expression level due to Trx1 acting as an SNO-GAPDH denitrosylase. Together, our results identify a new way that cells regulate heme protein maturation during inflammation.  相似文献   

20.
Reactive oxidative compounds including superoxide anions and nitric oxide are believed to play a central role in many blinding eye diseases. In the present study, we examine the effect of ischemia on human retinal pigment epithelial (RPE) cells in an unusual clinical case. We show that ischemia leads to extensive nitrotyrosine deposition in the RPE and choroid, thus indicating NO-dependent oxidative stress. We also show for the first time the in vivo translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) to the nuclei of RPE cells. This enzyme's nuclear translocation has previously been demonstrated in vitro where it is a marker of apoptosis. Furthermore, nitrotyrosine deposition and GAPDH translocation have been duplicated in vitro using human RPE cells. Thus, nitrotyrosine formation and GAPDH trafficking to the nucleus may be observed during ischemic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号