首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphate Regulation of Nitrate Assimilation in Soybean   总被引:24,自引:1,他引:23  
It is known that phosphorus deficiency results in alterationsin the assimilation of nitrogen. An experiment was conductedto investigate mechanisms involved in altered 15NO3 uptake,endogenous 15N translocation, and amino acid accumulation insoybean (Glycine max L. Merrill, cv. Ransom) plants deprivedof an external phosphorus supply for 20 d in solution culture.Phosphorus deprivation led to decreased rates of 15NO3uptake and increased accumulation of absorbed 15N in the root.Both effects became more pronounced with time. Asparagine, theprimary transport amino acid in soybean, accumulated in largeexcess in roots and stems. In roots of phosphorus-deprived plants,concentrations of ATP and inorganic phosphate declined rapidly,but dry weight accumulation was similar to or above that ofthe control even after 20 d of treatment. Arginine accumulationin leaves was greatly enhanced, even though 15N partitioninginto the insoluble reduced-N fraction of leaves was unaffected.The results suggest that decreases in NO3 uptake in lowphosphorus plants could be caused by feedback control factorsand by limited ATP availability. The decline in endogenous Ntransport from the root to the shoot may be associated withchanges in membrane properties, which also result in paralleleffects on hydraulic conductance and the upward flow of waterthrough the plant. Key words: Phosphorus stress, nitrate uptake, nitrate translocation, arginine  相似文献   

2.
Barley (Hordeum vulgare L., cvs Golf and Laevigatum) was grownunder nitrogen limitation in solution culture until near maturity.Three different nitrogen addition regimes were used: in the‘HN’ culture, the relative rate of nitrate-N additionwas 0·08 d–1 until day 48 and then stepwise decreasedto, finally, 0·005 d–1 during late grain-filling;the ‘LN’ culture received 45% of the nitrogen addedin HN; the ‘CN’ culture was maintained at RA 0·0375d–1 throughout growth. At four different growth stages(vegetative,anthesis, and twice during grain-filling), 15N-nitrate was fedto the plants. In some cases (‘split root cultures’),label was fed only to one-half of the root system. These wereharvested directly after labelling, whereas ‘standardcultured’ plants were harvested at termination of theexperiment (day 148). Absorption of added nitrate was nearlycomplete in the HN and LN cultures, and translocation of nitrogenwithin the plants could thus be studied independently of differencesin nitrate absorption. Cycling of nitrogen absorbed by vegetativeplants accounted for up to 50% of the nitrogen recovered inthe roots. The sink strength of the roots for cycling nitrogen,however, declined during post-anthesis growth, and net lossof nitrogen from both roots and vegetative shoot tissue occurredconcomitantly with incorporation of labelled 15N-nitrogen. Thenitrogen of the vegetative shoot tissue was substantially lesslabelled than the nitrogen entering the ears, indicating thattranslocation of recently absorbed nitrogen to ears occurs withminor prior exchange with the bulk nitrogen of shoots. In caseswhere the sink strength of the ears was weak, as in LN-culturedLaevigatum (due to high frequency of sterile flowers) and inCN-cultured Golf, nitrogen translocated from roots appearedto be incorporated into the vegetative shoot tissue. There werealso indications that a fraction of the remobilized nitrogenwas actually lost from the plants in these cases. It is concludedthat the root remains efficient in translocation of nitrogento the aerial parts throughout ontogeny and that nitrogen takenup during grain–filling is preferentially directly translocatedto the developing grains. The further translocation of nitrogenreceived by vegetative shoot parts to ears appears mainly relatedto the potential of the ear to accumulate nitrogen. Nitrogenabsorbed/remobilized in excess of the sink strength of the earsis either invested in continued shoot growth, or is irreversiblylost from the plants. Key words: Barley, 15N-labelling, post-anthesis, remobilization, translocation  相似文献   

3.
Breeze, V. G. and Hopper, M. J. 1987. The uptake of phosphateby plants from flowing nutrient solution. IV. Effect of phosphateconcentration on the growth of Trifolium repens L. suppliedwith nitrate, or dependent upon symbiotically fixed nitrogen.—J.exp. Bot. 38: 618–630. Nodulated white clover plants were subjected to a range of phosphateconcentrations in flowing solution culture (0.32 to 8.0 mmolm–3 P) at 41 d from sowing, either supplied with nitrateor dependent on symbiotically-fixed nitrogen. No effect of phosphateconcentration in solution on dry matter production, relativegrowth rate, root/shoot ratio, or water soluble carbohydrateconcentration of the plant tissue was observed after 24 d fromthe start of the experiment, although the plants supplied withnitrate yielded more than the others. Phosphate uptake throughoutthe experimental period was related to the solution concentration,but the source of nitrogen did not affect the phosphorus concentrationsof the shoots. However, the roots of the plants dependent onsymbiotically-fixed nitrogen had higher concentrations of phosphorusthan those supplied with nitrate, but this did not appear tobe due to an increased phosphorus requirement for nitrogen fixation,because the amount fixed was unaffected by the phosphate concentrationin solution. The cation-anion balance showed that plants dependenton nitrogen fixation had no larger requirement for calcium thanplants supplied with nitrate, but a requirement for hydroxylions equivalent to over 130 kg lime per tonne of dry shoot.It is suggested that the enhanced phosphate uptake by plantsdependent on nitrogen fixation is due to this need for a cation-chargebalancing anion. Key words: Phosphate uptake, nitrogen fixation, Trifolium repens L., repens L., cation-anion balance, flowing solution culture  相似文献   

4.
Growth and nitrate uptake kinetics in vegetatively growing barley(Hordeum vulgare L., cvs Laevigatum, Golf, and Mette) were investigatedin solution culture under long-term limitations of externalnitrogen availability. Nitrate was fed to the cultures at relativeaddition rates (RA) ranging from 0.02 to 0.2 d–1. Therelative growth rate (RG, calculated for total plant dry weight)correlated well with RA in the range 0.02 to 0.07 d–1.In the RA range from 0.07 to 0.2 d–1 RG continued to increase,but an increasing fraction of nitrogen, added and absorbed,was apparently stored rather than used for structural growth.The RG of the roots was less affected by RA. Vmax, for net nitrateuptake increased with RA up to 0.11 d–1, but decreasedat higher RA. The decline in Vmax coincided with a build-upof nitrate stores in both roots and shoots. Vmax, expressedper unit nitrogen in the plants (the relative Vmax, was higherthan required for maintenance of growth (up to 30-fold) at lowRA, whereas at higher RA the relative Vmax decreased. Kineticpredictions of steady-state external nitrate concentrationsduring N-limited growth ranged from 0.2 to 5.0 mmol m–3over the RG range 0.02 to 0.11 d–1. It is suggested thatthe nitrate uptake system is not under specific regulation atlow RA, but co-ordinated with root protein synthesis and growthin general. At RA higher than 0.11 d–1, however, specificregulation of nitrate uptake, possibly via root nitrate pools,become important. The three cultivars showed very similar growthand nitrate uptake characteristics. Key words: Barley, growth, nitrogen limitation, nitrate uptake, kinetics  相似文献   

5.
Two varieties (Nihonbare and Koshihikari) of rice plants (Oryzasativa L.) were grown hydro-ponically with two levels (20 and100 mg N liter –1) of ammonia. Variations in levels ofnatural abundance of 15N (15N) were analyzed in the ammoniaand organic nitrogen of shoots and roots, as well as in theammonia in the culture solution. There was substantial fractionationof nitrogen isotopes during the uptake of ammonia. When plantsabsorbed a large proportion of ammonia from a solution witha low concentration, less negative 15N values in plants andhigh positive 15N values in the ammonia remaining in solutionwere observed. The reverse was found when a smaller fractionof ammonia was absorbed from a solution with a higher concentrationof ammonia. The l5N values of ammonia in shoots and roots werehigher than in the respective constituent organic nitrogen,suggesting the fractionation of nitrogen isotopes during theassimilation of ammonia. Wild-type and mutant cells of the cyanobacterium(blue-green alga) Synechococcus PCC 7942 were grown in nitrate-or ammonia-containing medium as the source of nitrogen. Fractionationof nitrogen isotopes during the uptake of nitrate was limited,whereas that during the uptake of ammonia was considerable. 1 In this report, the term ammonia refers indiscriminately toboth NH3 or NH4+. (Received June 13, 1991; Accepted September 12, 1991)  相似文献   

6.
Dark-grown, decapitated corn (Zea mays L.) seedlings that hadbeen grown without nitrogen were used to characterize relationshipsamong uptake, translocation and in vivo reduction of [15N] nitrateduring induction of the nitrate uptake process and throughoutthe subsequent steady-state period. During induction, cumulativenitrate reduction increased from less than 20%of cumulativenitrate uptake to about 30%Concurrently, translocation of nitrateincreased from less than 30%to over 50%of that absorbed. Duringthe following steady-state period, partitioning of incomingnitrate between reduction and translocation remained relativelyconstant. Initially, removal of the endosperm had little effecton nitrate uptake, but by 6 h cumulative uptake had been depressed30%relative to control plants. In contrast, endosperm removallimited nitrate reduction within 1 h, and as a consequence nitratereduction during the 6 h exposure period was 60% less in endosperm-freetissues. Collectively these observations indicate that nitrateuptake and reduction are independent processes, since they developat dissimilar rates upon initial exposure to nitrate, and sincethey differ markedly in response to endosperm removal. However,the constancy of nitrate reduction during steady-state uptake(30% of incoming nitrate), does reflect an association betweenthe two processes. Key words: uptake, reduction, -N translocation, Induction, Post-induction  相似文献   

7.
Wanek  Wolfgang  Popp  Marianne 《Plant and Soil》2000,221(1):13-24
Increased levels of rhizospheric dissolved inorganic carbon have repeatedly been demonstrated to enhance plant growth by up to 80%, although carbon from dark fixation accounts for only 1–3% of total plant carbon gain. This study, therefore, aimed at investigating the effects of bicarbonate on nitrate uptake, assimilation and translocation to shoots. Clonal saplings of poplar (Populus canescens(Ait.) Sm.) and elder (Sambucus nigraL.) were grown hydroponically for 35 days in a nutrient solution containing 0, 0.5 and 1 mM bicarbonate and 2 mM nitrate as the sole nitrogen source at pH 7.0. Net nitrate uptake, root nitrate accumulation and reduction, and export of nitrogenous solutes to shoots were measured after incubating plants with 15N-labelled nitrate for 24 h. Net nitrate uptake increased non-significantly in plant species (19–61% compared to control plants) in response to 1 mM bicarbonate. Root nitrate reduction and nitrogen export to shoots increased by 80 and 95% and 15 and 44% in poplar and elder, respectively. With enhanced root zone bicarbonate, both species also exhibited a marked shift between the main nitrate utilising processes. Poplar plants increasingly utilised nitrate via nitrate reduction (73–88% of net nitrate uptake), whereas the proportions of export (20–9%) and storage in roots (7–3%) declined as plants were exposed to 1 mM external bicarbonate. On the other hand, elder plants exhibited a significant increase of root nitrate reduction (44–66%) and root nitrate accumulation (6–25%). Nitrate translocation to elder shoots decreased from 50 to 8% of net nitrate uptake. The improved supply of nitrogen to shoots did not translate into a significant stimulation of growth, relative growth rates increased by only 16% in poplar saplings and by 7% in elder plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
To investigate nitrogen assimilation in Lolium perenne L. colonized by the arbuscular mycorrhizal (AM) fungus Glomus fasciculatum (Thax. sensu Gerd.), nitrate uptake, key enzyme activities, and 15N incorporation into free amino acids were measured. After a 4-h labelling period with [15N]nitrate, 15N content was higher in roots and shoots of AM-plants than in those of control plants. Glutamine synthetase (GS) and nitrate reductase (NR) activities were increased in shoots of AM-plants, but not in roots. More label was incorporated into amino acids in shoots of AM plants. Glutamine, glutamate, alanine and γ-aminobutyric acid were the major sinks for 15N in roots and shoots of control and AM plants. Interactions between mycorrhizal colonization, phosphate and nitrate nutrition and NR activity were investigated in plants which received different amounts of phosphate or nitrate. In shoots of control plants, NR activity was not stimulated by high levels of phosphate nutrition but was stimulated by high levels of nitrate. At 4 m M nitrate in the nutrient solution, NR activity was similar in control and AM plants. We concluded that mycorrhizal effects on nitrate assimilation are not mediated via improved phosphate nutrition, but could be due to improved nitrogen uptake and translocation.  相似文献   

9.
Nitrate ion uptake by the roots of hydroponically grown maizeseedlings was measured using the short-lived isotope 13N. Itis shown to be described by a four compartment model, recognizablynitrogen in the root bathing solution, nitrogen which is readilyexchangeable from the root, nitrogen bound in the root, andnitrogen transported from the root. Some of the absorbed activity leaks back into the root bathingsolution with the efflux from the root, as a fraction of theinflux, increasing with concentration to be greater than 0–8at external nitrate ion concentrations above about 1.0 mol m–3.The capacity of the exchangeable root pool increases with externalnitrate ion concentration, approaching the expected cytoplasmicnitrate ion content at the highest external nitrate ion concentrationsstudied (70 mol m–3). The investigation has highlighted the problems of interpretinguptake profiles in experiments for which the 10 min half-lifeof 13N dictates experimental times that are comparable withthe times for saturation of root pools. Key words: Zea mays, 13N, Compartmental model, Nitrate uptake  相似文献   

10.
The xylem exudation of detopped 7-d-old seedlings of Zea maysL. doubled when KCI was present in the root medium comparedto seedlings maintained on water. It was further enhanced whenKCI was replaced by nitrogen compounds such as nitrate, ammoniumand glutamine. The role of the nitrate assimilation pathwayon the enhancement of xylem exudation rate was investigatedusing tungstate, an inhibitor of nitrate reductase (NR) activity,and phosphinothricin or methionine sulphoximine, inhibitorsof glutamine synthetase (GS) activity. The sap levels of NO3,NH4+, glutamine, and asparagine was used to ascertain the invivo inhibition of both enzymes. The tungstate effects werealso checked by measuring leaf in vitro NA activity and NR proteincontent. Xylem exudation rate of detopped seedlings fed withKNO3 decreased when the nitrate assimilation pathway was blockedeither at the NR or at GS sites. This decrease was preventedwhen urea (acting as NH4+ supply) was given simultaneously withtungstate. KNO3 does not act directly on exudation, but throughthe involvement of NH4+. The involvement of glutamine was alsoshown since GS inhibition resulted in a cancellation of theenhancing effect of KNO3 on exudation. As change of exudationrate was not linked to change in sap osmolarity, it is assumedthat the assimilation chain could modify root water conductance.The role of glutamine was discussed. Key words: Exudation, maize, nitrate, conductance, NR, GS  相似文献   

11.
The rate of uptake of 32P from labelled NaH2PO4 solutions sprayedon to one leaf of swedes (Brassica napus) or French beans (Phaseolusvulgaris) was rapid during the first few hours and fell to zeroafter 4 days. 22P was detected in the root after 3 hours andcontinued to move out of the treated leaf for at least 6 daysafter application. A larger fraction of the applied 32P wasabsorbed from repeated than from a single spraying. Swedes absorbed more 32P from a single application to the lowersurface than to the upper surface of the leaf. Doubling theconcentration of the spray caused a small increase in the percentageof applied 22P that was absorbed. Absorption by French-beanleaves decreased slightly when the area sprayed with a constantamount of 32P was doubled, and decreased with increasing ageof leaf. Increasing the phosphorus supply to the roots of swedesaffected neither the initial rate nor the total amount of 32Puptake by the leaves but decreased the quantity of 32P thatwas translocated out of the treated leaf. Increasing the relative humidity of the air around the plantsalso increased32P uptake. Shading usually decreased uptake andalways decreased translocation. Rewetting the leaf to whichthe 32P had been applied, with water or sucrose solution, hadvariable effects. The significance of the results is discussed.  相似文献   

12.
Barley plants were grown in nutrient solution at two contrastingnitrate concentrations to produce plants of low or high nitrogen(N) status. Leaves were then exposed continuously to either0.3 mm3 dm–3 NO2 or clean air, with the roots and rootingmedium isolated from the polluted air. Uptake of NO2 was measuredin two ways; as depletion from an air stream containing thegas and using 15N-labelled NO2. Results from the two methodsagreed well and demonstrated that the flux of NO2 into the leavesof N-deficient barley was lower than that of N-sufficient plants.Nevertheless, the relative contribution of15N derived from 15NO2to the N status of the plant was greater in the plants suppliedwith low nitrate. A major factor in regulating NO2 uptake bybarley leaves appeared to be stomatal conductance, althoughinternal conductance may also be involved. The effects of NO2exposure of barley on carbon dioxide exchange rates, transpirationand water vapour conductance were also influenced by the N statusof the plant. Key words: Hordeum vulgare, 15N-labelled NO2, carbon dioxide exchange, transpiration  相似文献   

13.
Carob seedlings were grown hydroponically for 9 weeks under360 and 800 µl l-1CO2. One of two nitrogen sources, nitrateor ammonium, was added to the nutrient medium at concentrationsof 3 mol m-3. Root systems of the developing plants suppliedwith nitrate compared to those supplied with ammonium were characterizedby:(a)more biomass on the lower part of the root;(b)fewer lateralroots of first and second order;(c)longer roots;(d)higher specificroot length;(e)a smaller root diameter. The morphology of theroot systems of nitrate-fed plants changed in the presence ofelevated carbon dioxide concentrations, resembling, more closely,that of ammonium-fed plants. Total leaf area was higher in ammonium-than in nitrate-fed plants. Nitrate-fed plants had greater totalleaf area in the presence of high carbon dioxide than in normalCO2, due to an increase in epidermal cell size that led to developmentof larger leaflets with lower stomatal frequency. The observedchanges in the morphology of roots and shoots agreed with theresults observed for total biomass production. Nitrate-fed plantsincreased their biomass production by 100% in the presence ofelevated CO2compared to 15% in ammonium-fed plants, indicatingthat the response of carob to high CO2concentrations is verydependent on the nitrogen source. Under elevated CO2, nitrate-grownplants had a larger content of sucrose in both roots and shoots,while no significant difference was observed in the contentof sucrose in ammonium-grown plants, whether in ambient or enrichedcarbon dioxide. Hence, the differences in soluble carbohydratecontents can, at least partly, account for differences in rootand shoot morphology.Copyright 1997 Annals of Botany Company Ceratonia siliquaL.; carob; ammonium; carbohydrate; carbon dioxide; nitrate; morphology; sucrose  相似文献   

14.
Two experiments were conducted to evaluate the effects of phenotypicrecurrent selection for high and low post-anthesis leaf-laminain vivo NRA on nitrate uptake, nitrate partitioning and in vitroNRA of seedling roots and leaves. In Experiment 1, intact plantsof cycle 0, 4, and 6 of the high and low NRA strains were grownon NH4-N for 11 d, then exposed to 1.0 mol m–3 KNO3, andcultures sampled at 6 h and 28 h (induction and post-inductionperiods). Nitrate uptake, tissue nitrate concentration and invitro NRA were determined. The pattern of response to selectionin seedling leaf NRA was similar to that observed for in vivoNRA of field grown plants. Leaf NRA increased between 6 h and28 h. Root NRA was not affected by selection or sampling time.Treatments differed in total fresh weight but not in reductionor uptake of nitrate per unit weight, indicating a lack of correspondencebetween NRA and reduction and supporting the idea that concomitantreduction by NR is not obligatorily linked to nitrate influxin the intact plant. In Experiment 2, dark-grown plants of cycle 0, and 6 of thehigh and low NRA strains were cultured without N, detopped onday 6, transferred the following day to 0-75 mol m–3 KNO3and sampled at 6 h and 28 h. In contrast to Experiment 1, selectionpopulations differed in nitrate reduction and root NRA, whichby 28 h reached higher average levels than root NRA of intactplants. Translocation and reduction were inversely related amongstrains within each sampling time. The high level of translocationin detopped plants of the low NRA strain was difficult to reconcilewith its low leaf NRA level of Experiment 1. It is suggestedthat nitrate transport in detopped roots is altered relativeto the intact system in a way which permits greater NRA inductionand nitrate reduction. The results indicate that nitrate partitioningby detopped root systems should be interpreted with caution. Key words: Zea, nitrate reductase activity, nitrate uptake, nitrate reduction, nitrate partitioning, selection  相似文献   

15.
Whitehead, D. C. and Lockyer, D. R. 1986. The influence of theconcentration of gaseous ammonia on its uptake by the leavesof Italian ryegrass, with and without an adequate supply ofnitrogen to the roots.—J. exp. Bot. 38: 818–827. Plants of Italian ryegrass (Lolium multiflorum Lam.) were grownin pots of soil with two rates of 15N-labclled nitrate, oneproviding adequate, and the other less than adequate, N formaximum growth. After 25 d in a controlled environment cabinet,the plants were transferred to chambers and exposed for 33 dto NH3in the air at one of nine concentrations ranging from14 to 709 µg NH3 m–3. Increasing the concentrationof NH3 in the air increased the dry weight of the shoots ofplants grown at the lower but not the higher rate of nitrate.The content of total N in the plant shoots (% dry weight) waslinearly related to NH3 concentration; at 709 µg NH3 andin both sets of plants it was more than double the content at14 µg NH3 m–3. Calculations, based on 15N enrichment,indicated that the amount of N taken up from the NH3 per unitleaf area increased linearly with increasing concentration ofNH3 in the air uptake (µg dm–2 h–1) = 0.1009xat the lower rate of nitrate and 0-0829x at the higher rateof nitrate, where x is the concentration of NH3 in the air expressedas µg NH3m–3. The proportion of the total plant N that was derived from theNH3 ranged from 4?0% at a concentration of 14 µg NH3 m–3with the higher rate of nitrate addition to 77?5% at a concentrationof 709 µg m–3 with the lower rate of nitrate addition.The proportions of the total N in the water-insoluble proteinof the leaf tissue that were derived from nitrate and gaseousNH3 were similar to the proportions in the whole leaf material. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

16.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

17.
Tobacco shoots were grown in vitro for 35 d, in MS culture mediummodified to include various sources (nitrate-N, ammonium-N ora mixture) and levels (0–120 mM) of N, and in the presenceof 0–180 mM NaCI or iso-osmotic concentrations of mannitol.Growth of control plantlets was significantly inhibited whenNH4+-N was the sole N source, and at high (120 mM) NO3-N supply. Under conditions of salt stress (90 and 180 mM NaCI)growth was repressed, with roots being more severely affectedthan shoots. Salinity also inhibited root emergence in vitro.The only alleviation of the salt stress by nitrate nutritionobserved in this study was on shoot growth parameters of plantletsgrown on 60 mM NO3-N and 90 mM NaCI. Although both weresignificantly inhibited by NaCI, nitrate reduc-tase activitywas more severely affected than nitrate uptake. When mannitolreplaced NaCI in the culture medium, similar Inhibition of growth,nutrient uptake and enzyme activity were recorded. These observations,together with the relatively low recorded values for Na+ andCI uptake, indicate that under in vitro salt stress conditionsthe negative effects of NaCI are primarily osmotic. Key words: Growth, nitrogen metabolism, osmotic stress, salinity  相似文献   

18.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

19.
Peoples, M. B., Sudin, M. N. and Herridge, D. F. 1987. Translocationof nitrogenous compounds insymbiotic and nitrate-fed amide-exportinglegumes.–J. exp. Bot. 38: 567–579. The transport of nitrogen from the roots and nodules of chickpea(Cicer anetinum L.), lentil (Lens culinaris Medic), faba bean(Vicia faba L.) and pea (Pisum sativum L.) was examined in glasshouse-grownplants supplied either with nitrate-free nutrients or with nutrientssupplemented with 1,2,4 or 8 mol m-3153N-nitrate. A sixth treatmentcomprised uninoculated plants supplied with 8–0 mol m-31513N-nitrate. For each species, more than 75% of the nitrogenwas exported from the nodules as the amides, asparagine andglutamine. In fully symbiotic plants, the amides also dominatednitrogen transport to the shoot When N2 fixation activity wasdecreased by the addition of nitrate to the rooting medium,the N-composition of xylem exudate and stem solutes changedconsiderably. The relative concentrations of asparagine tendedto increase in the xylem whilst those of glutamine were reduced;the levels of nitrate increased in both xylem exudate and thesoluble nitrogen pool of the stem with a rise in nitrate supply.The changes in relative nitrate contents reflected generallythe contributions of root and shoot to overall nitrate reductaseactivity at the different levels of nitrate used. The relationshipsbetween the relative contents of xylary or stem nitrate andamino nitrogen and the plants' reliance on N2 fixation (determinedby the 15N isotope dilution procedure) were examined. Data suggestthat compositional relationships based on nitrate may be reasonableindicators of symbiotic dependence for all species under studyexcept faba bean when greater than 25% of plant nitrogen wasderived from N2 fixation. Key words: Nitrogen, translocation, legumes  相似文献   

20.
During vegetative growth in controlled environments, the patternof distribution of 14C-labelled assimilates to shoot and root,and to the meristems of the shoot, was measured in red and whiteclover plants either wholly dependent on N2 fixation in rootnodules or receiving abundant nitrate nitrogen but lacking nodules. In experiments where single leaves on the primary shoot wereexposed to 14CO2, nodulated plants of both clovers generallyexported more of their labelled assimilates to root (+nodules),than equivalent plants utilizing nitrate nitrogen, and thiswas offset by reduced export to branches (red clover) or stolons(white clover). The intensity of these effects varied with experiment.The export of labelled assimilate to growing leaves at the terminalmeristem of the donor shoot was not influenced by source ofnitrogen. Internode elongation in the donor shoot utilized nolabelled assimilate. Whole plants of white clover exposed to 14CO2 on seven occasionsover 32 days exhibited the same effect on export to root (+nodules),which increased slightly in intensity with increasing plantage. Nodulated plants had larger root: shoot ratios than theirequivalents utilizing nitrate nitrogen. Trifolium repens, Trifolium pratense, red clover, white clover, nitrogen fixation, nitrate utilization, assimilate partitioning  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号