首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of galactomannanase for degrading konjac gel   总被引:2,自引:0,他引:2  
Galactomannanase (Glmnase) is an enzyme product derived from Aspergillus niger. The activity of Glmnase degrading (hydrolyzing) the konjac gel were investigated. Significant loss in the enzyme activity was found when the temperature above 60 °C. Similar observations were obtained when the reaction pH above 5. Further increase in the pH value resulted in entirely loss of enzyme activity at the alkaline pH region (pH 8.0 and above). The optimal hydrolyzing temperature and pH were at 60 °C and 5.0, respectively. For the stability test, the purified Glmnase increased its thermostability up to 70 °C at pH 5.0, but it retained only about 60% activity after 60 min incubation at this temperature and its activity became zero after 20 min incubation at 80 °C. The Glmnase was stable at the pH range from 3.0 to 7.0 at room temperature and retained at least 80% activity for 60 min. For the storage temperature test, the lyophilized Glmnase still conserved about 90% activity during 7 days at 30 °C, and was higher than about 80% at 4 °C. The Km and Vmax, were 0.018 mg/ml konjac powder and 0.20 mg/ml reducing sugar per min, respectively.  相似文献   

2.
1. The present study examined the effect of the thermal state of the body (as reflected by rectal temperature) on cheek skin temperature and thermal resistance in active and inactive subjects.

2. Active subjects were exposed to a 30 min conditioning period (CP) (0 °C air with a 2 m/s wind), followed immediately by a 30 min experimental period (EP) (0 °C with a 5 m/s wind). Inactive subjects were exposed to a 30 min CP (22 °C air with no wind), followed immediately by a 45 min EP (0 °C air with a 4.5 m/s wind). The CP period was used to establish a core temperature difference between the active and inactive subjects prior to the start of EP. The 0 °C exposure was replaced with a −10 °C ambient air exposure and the experiment was repeated on a separate day. Subjects were comfortably dressed for each ambient condition.

3. Cheek skin temperature was not significantly higher in active subjects when compared to inactive subjects, but thermal resistance was higher in active subjects.

4. Cheek skin temperature and thermal resistance both decreased as ambient temperature decreased from 0 to −10 °C. The lower cheek thermal resistance at −10 °C may have been due to a greater cheek blood flow as a result of cold-induced vasodilation.

Keywords: Core temperature; Face skin temperature; Cheek thermal resistance; Cold exposure; Exercise  相似文献   


3.
4.
1 Metabolic rates (Vo2), body temperature (Tb), and thermal conductance (C) were first determined in newly captured Maximowiczi's voles (Microtus maximowiczii) and Djungarian hamsters (Phodopus campbelli) from the Inner Mongolian grasslands at a temperature range from 5 to 35 °C.

2 The thermal neutral zone (TNZ) was between 25 and 32.5 °C for Maximowiczi's voles and between 25 and 30 °C for Djungarian hamsters. Mean Tb was 37.0±0.1 °C for voles and 36.2±0.1 °C for hamsters. Minimum thermal conductance was 0.172±0.004 ml O2/g h °C for voles and 0.148±0.003 ml O2/g h °C for hamsters.

3 The mean resting metabolic rate within TNZ was 2.21±0.05 ml O2/g h in voles and 2.01±0.07 ml O2/g h in hamsters. Nonshivering thermogenesis was 5.36±0.30 ml O2/g h for voles and 6.30±0.18 ml O2/g h for hamsters.

4 All these thermal physiological properties are adaptive for each species and are shaped by both macroenvironmental and microenvironmental conditions, food habits, phylogeny and other factors.

Keywords: Basal metabolic rate; Body temperature; Djungarian hamster (Phodopus campbelli); Maximowiczi's vole (Microtus maximowiczii); Nonshivering thermogenesis; Minimum thermal conductance  相似文献   


5.
A novel crude glycyrrhizin (GL) hydrolase preparation from the liver of domestic duck was used to produce glycyrrhetic acid monoglucuronide. To characterize the biocatalytic profiles of the crude enzyme, some effect factors were investigated. It had an apparent optimal pH of 6.0 and an optimal temperature at 55 °C. Most of the metal ions tested and ethylene diamine tetra acetic acid showed little effect on the crude enzyme activity except Cu2+. The enzyme was stable only at pH 6. It was more prone to inactivity at high pH conditions than at low pH conditions. It was stable at temperatures below 55 °C and it will lost 90% GL hydrolytic activity exposed at 70 °C. GL hydrolytic activity declined by 30% compared with the control in aqueous solution (buffer pH 6.0) when pre-equilibrated at 55 °C for 5 days. It indicated that the novel crude GL hydrolase preparation had good biocatalytic ability for selective hydrolysis of one glucuronic acid from GL.  相似文献   

6.
Immobilization of catalase into chemically crosslinked chitosan beads   总被引:8,自引:0,他引:8  
Bovine liver catalase was immobilized into chitosan beads prepared in crosslinking solution. Various characteristics of immobilized catalase such as the pH–activity curve, the temperature–activity curve, thermal stability, operational stability, and storage stability were evaluated. Among them the pH optimum and temperature optimum of free and immobilized catalase were found to be pH 7.0 and 35 °C. The Km value of immobilized catalase (77.5 mM) was higher than that of free enzyme (35 mM). Immobilization decreased in Vmax value from 32,000 to 122 μmol (min mg protein)−1. It was observed that operational, thermal and storage stabilities of the enzyme were increased with immobilization.  相似文献   

7.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

8.
A gene encoding a nicotinamide mononucleotide (NMN) adenylyltransferase (NMNAT, EC 2.7.7.1) homologue was identified via genome sequencing in the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii OT-3. The gene encoded a protein of 186 amino acids with a molecular weight of 21,391. The deduced amino acid sequence of the gene showed 59% identities to the NMNAT from Methanococcus jannaschii. The gene was overexpressed in Escherichia coli, and the produced enzyme was purified to homogeneity. Characterization of the enzyme revealed that it is an extremely thermostable NMNAT; the activity was not lost after incubation at 80 °C for 30 min. The native molecular mass was estimated to be 77 kDa. The Km values for ATP and NMN were calculated to be 0.056 and 0.061 mM, respectively. The optimum temperature of the reaction was estimated to be around 90 °C. The adenylyl group donor specificity was examined by high-performance liquid chromatography (HPLC). At 70 °C, ATP was a prominent donor. However, above 80 °C, a relatively small, but significant, NMNAT activity was detected when ATP was replaced by ADP or AMP in the reaction mixture. To date, an NMNAT that utilizes ADP or AMP as an adenylyl group donor has not been found. The present study provides interesting information in which a di- or mono-phosphate nucleotide can be utilized by adenylyltransferase at high temperature.  相似文献   

9.
Pre-cooling improves heat tolerance and time to exhaustion in the heat. We tested the possibility that reduced tissue temperatures may explain this phenomenon, using three whole-body treatments: pre-cooling, thermoneutral (control) and pre-heating. Pre-cooling reduced muscle temperature (Tm) by 6.3 °C while pre-heating increased Tm 3.4 °C, relative to control. Despite this offset, Tm climbed towards a common asymptote, with pre-cooling offering no thermal protection beyond 40 min. Following pre-cooling, exercising oesophageal temperature (Tes) initially increased at 0.09 °C min−1, being significantly faster than control (0.05 °C min−1) and pre-heated conditions (0.03 °C min−1). Pre-cooling lowered the sweat threshold and also resulted in a reduced cardiac frequency across the exercise-heat exposure. Our observations do not support the hypothesis that pre-cooling reduces Tm at the end of an exercise-heat exposure, thereby delaying the development of fatigue.  相似文献   

10.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP g-1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min-1 µg-1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

11.
Xylanase from Aspergillus tamarii was covalently immobilized on Duolite A147 pretreated with the bifunctional agent glutaraldehyde. The bound enzyme retained 54.2% of the original specific activity exhibited by the free enzyme (120 U/mg protein). Compared to the free enzyme, the immobilized enzyme exhibited lower optimum pH, higher optimum reaction temperature, lower energy of activation, higher Km (Michaelis constant), lower Vmax (maximal reaction rate). The half-life for the free enzyme was 186.0, 93.0, and 50.0 min for 40, 50, and 60°C, respectively, whereas the immobilized form at the same temperatures had half-life of 320, 136, and 65 min. The deactivation rate constant at 60°C for the immobilized enzyme is about 6.0 × 10−3, which is lower than that of the free enzyme (7.77 × 10−3 min). The energy of thermal deactivation was 15.22 and 20.72 kcal/mol, respectively for the free and immobilized enzyme, confirming stabilization by immobilization. An external mass transfer resistance was identified with the immobilization carrier (Duolite A147). The effect of some metal ions on the activity of the free and immobilized xylanase has been investigated. The immobilized enzyme retained about 73.0% of the initial catalytic activity even after being used 8 cycles.  相似文献   

12.
Lipase from Candida rugosa was encapsulated within a chemically inert sol–gel support prepared by polycondensation of the precursor tetraethoxysilane (TEOS) in the presence of polyethylene glycol (PEG) as additive. The properties of silica and their derivatives with regard to mean pore diameter, specific surface area, mean pore size, weight loss upon heating (thermogravimetric analysis, TGA) and 29Si and 13C NMR are reported. The pH optimum shifted from 7.8 to 6.7 and optimum temperature jumped from 36 to 60 °C upon enzyme encapsulation. Encapsulated lipase in presence of PEG (EN-PEG) exhibited higher stability in the range of 37–45 °C, but from 50 to 65 °C the EN-PEG was inactivated after seven cycles. Hydrolytic activity during long-term storage at room temperature decreased to 50% after 94 days. High diffusional resistance was observed for large oil concentration reducing hydrolytic effectiveness by 60% in the case of the encapsulated lipase. NMR, pore size and specific surface area data suggested an active participation of the lipase enzyme during gelling of the silica matrix. This lead to reduction of available Si–OH groups, larger pores and smaller surface area. Larger pores increase substrate diffusion that correlates well with higher hydrolytic activity of the TEOS–PEG sol–gel matrix encapsulated enzyme in comparison with other sol–gel supports.  相似文献   

13.
Pro-transglutaminase from Streptomyces mobaraensis was expressed in Escherichia coli as a fusion protein carrying a C-terminal histidine tag (pro-MTG-His6). The recombinant organism was cultivated in 15 L bioreactor scale and pro-MTG-His6 was purified by immobilized metal affinity chromatography. Activation of the inactive pro-enzyme using trypsin resulted in an unexpected degradation of the transglutaminase and a concomitant loss of activity. Therefore, a set of commercially available proteases was investigated for their activation potential without destroying the target enzyme. Besides trypsin, chymotrypsin and proteinase K were found to activate but hydrolyze the (pro-MTG-His6). Cathepsin B, dispase I, and thrombin were shown to specifically hydrolyze pro-MTG-His6 without deactivation. TAMEP, the endogeneous protease from S. mobaraensis was purified for comparison and also found to activate the recombinant histidine-tagged transglutaminase without degradation. The TAMEP activated MTG-His6 was purified and characterized. The specific activity (23 U/mg) of the recombinant histidine-tagged transglutaminase, the temperature optimum (50 °C), and the temperature stability (t1/2 at 60 °C = 1.7 min) were comparable to the wild-type enzyme. A C-terminal peptide tag did neither affect the activity nor the stability but facilitated the purification. The purification of the histidine-tagged protein is possible before or after activation.  相似文献   

14.
The organic solvent-tolerant strain K protease was purified to homogeneity by ammonium sulphate precipitation and anion exchange chromatography with 124-fold increase in specific activity. The molecular mass of the purified enzyme as revealed by SDS-PAGE electrophoresis is 51,000 Da. The strain K protease was an alkaline metalloprotease with an optimum pH and temperature of 10 and 70 °C, respectively. The enzyme showed stability and activation in the presence of organic solvents with log Pa/w values equal or more than 4.0. After 14 days of incubation, the purified protease was activated 1.11, 1.82, 1.50, 1.75 and 1.80 times in 1-decanol, isooctane, decane, dodecane and hexadecane, respectively.  相似文献   

15.
A thermostable, alkaline active xylanase was purified to homogeneity from the culture supernatant of an alkaliphilic Bacillus halodurans S7, which was isolated from a soda lake in the Ethiopian Rift Valley. The molecular weight and the pI of this enzyme were estimated to be around 43 kDa and 4.5, respectively. When assayed at 70 °C, it was optimally active at pH 9.0–9.5. The optimum temperature for the activity was 75 °C at pH 9 and 70 °C at pH 10. The enzyme was stable over a broad pH range and showed good thermal stability when incubated at 65 °C in pH 9 buffer. The enzyme activity was strongly inhibited by Mn2+. Partial inhibition was also observed in the presence of 5 mM Cu2+, Co2+ and EDTA. Inhibition by Hg2+ and dithiothreitol was insignificant. The enzyme was free from cellulase activity and degraded xylan in an endo-fashion.  相似文献   

16.
An unusual halotolerant-alkaline laccase from Streptomyces psammoticus has been purified to homogeneity through anion exchange and gel filtration chromatography steps with an overall purification fold of 12.1. The final recovery of the enzyme was 22.1%. The molecular mass of the purified laccase was about 43 kDa. The enzyme was active in the alkaline pH range with pH optima at 8.5 and 97% activity retention at pH 9.0. The optimum temperature was 45 °C. The enzyme was stable in the pH range 6.5–9.5 and up to 50 °C for 90 min. The enzyme was tolerant to NaCl concentrations up to 1.2 M. It was inhibited by all the putative laccase inhibitors while the enzyme was activated by metal ions like Fe, Zn, Cu, Na and Mg. Fe enhanced the enzyme activity by twofold (204%). The enzyme showed lowest Km value with pyrogallol (0.25 mM) followed by ABTS (0.39 mM). The purified enzyme was a typical blue laccase with an absorption peak at 600 nm.  相似文献   

17.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

18.
A highly enantioselective (R)-ester hydrolase was partially purified from a newly isolated bacterium, Acinetobacter sp. CGMCC 0789, whose resting cells exhibited a highly enantioselective activity toward the acetate of (4R)-hydroxy-3-methyl-2-(2-propynyl)- cyclopent-2-enone (R-HMPC). The optimum pH and temperature of the partially purified enzyme were 8.0 and 60 °C, respectively. The enantioselectivity of the crude enzyme was increased by 1.2-fold from 16 to 20 when the reaction temperature was raised from 30 to 60 °C. The activity of the crude enzyme was enhanced by 4.1-fold and the enantioselectivity (E-value) was markedly enhanced by 4.3-fold from 16 to 68 upon addition of a cationic detergent, benzethonium chloride [(diisobutyl phenoxyethoxyethyl) dimethyl benzylammoniom chloride]. The hydrolysis of 52 mM (R,S)-HMPC acetate to (R)-HMPC was completed within 8 h, with optical purity of 91.4% eep and conversion of 49%.  相似文献   

19.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT, E.C. 2.4.2.8) from Artemia cysts exhibits maximum activity at 70°C. Its thermal stability has been examined following enzymatic activity as a function of temperature. Cold-induced renaturation experiments of samples heated at increasing temperatures showed that reversibility of thermal inactivation depends on the incubation time and final temperature. Prolonged incubation of the thermoinactivated enzyme at 0°C did not afford any further increase of the catalytic activity at 37°C. The complex substrate PRPP:Mg protects HGPRT from thermal inactivation. However, incubations with hypoxanthine rendered a less thermostable enzyme at any temperature tested. The irreversible inactivation of HGPRT proceeds in two exponential steps. The analysis of the apparent rate constants for the fast and the slow phases, λ1 and λ2 as per the Lumry and Eyring model suggests the existence of more than three states in the thermal denaturation pathway of the free enzyme. In the presence of PRPP:Mg the irreversible process follows a single exponential and proceeds very slowly below 70°C. PRPP:Mg also protects the enzyme from inactivation by NEM and pCMB, suggesting that -SH groups may be in the vicinity of the active site  相似文献   

20.
1. Skin and rectal temperatures were recorded continuously in 70 measurements during typical tasks of infantry and artillery training at 0 to −29 °C. The duration of the measurements varied from 55 min to 9.5 h.

2. The distribution of finger skin temperatures was quite similar at ambient temperature ranges 0 to −10 °C and −10 to −20 °C, while at −20 to −30 °C the finger temperatures were clearly lower.

3. At different ambient temperature ranges, 20–69% of finger temperatures were low enough to cause cold thermal sensations.

4. Sensation of cold was experienced at a finger temperature of 11.6±3.7 °C (mean±SD).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号