首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloidogenic processing of beta-amyloid precursor protein (APP) leading to Abeta accumulation is critical in Alzheimer's disease (AD). Abeta leads to pre-synaptic molecular changes in hippocampus of the AD mutant transgenic mouse model Tg2576 prior to plaque formation. Since NGF is critical to neuronal growth and is involved in regulating APP processing, we tested the hypothesis that NGF expression is altered early in this model of AD. We measured APP products and mRNAs for NGF and its low-affinity receptor p75 in 10-month-old Tg2576 whole brain after dietary propentofylline (PPF) or acetyl-L-carnitine (ALCAR) for 4 weeks to induce NGF- or p75-expression, respectively. The results (all P<0.0002) show that compared to wild-type or littermate controls, the transgene leads to decreases of 44% in NGF-mRNA, 25% in p75-mRNA, 64% in sAPPalpha, and 21-fold increases in Abeta40/42. PPF increased NGF-mRNA by 20% and sAPPalpha by 42% while decreasing Abeta40/42 by 45/48%, with no effect on p75-mRNA in Tg animals. ALCAR increased p75-mRNA by 16% and decreased Abeta40/42 by 46/26% with no significant effect on sAPPalpha or NGF-mRNA in Tg animals. The results indicate that NGF expression is reduced early in the Tg brain, that this reduction potentiates further Abeta formation in a vicious cycle, and that inducing NGF shifts the balance toward secretory processing of APP. To a lesser extent, p75 decreases Abeta peptides, possibly via peptidases since sAPPalpha level is not changed.  相似文献   

2.
Family studies have demonstrated striking differences between individuals in their ability to produce IL-10 following lipopolysaccharide (LPS) stimulation of whole blood cultures in vitro, suggesting that differences in IL-10 production involve a considerable hereditary component. The first aim of this study was to analyse the possible effect of IL-10 genotypes and haplotypes on IL-10 plasma levels in a healthy Finnish population. As previous reports have demonstrated that endogenously produced IL-1 induces LPS-stimulated IL-10 production and that IL-10 inhibits synthesis of IL-1 in human monocytes, it is apparent that these two cytokines form an autoregulatory feedback loop. Secondly, we were interested whether any relationship could be found between IL-10 and IL-1beta in vivo. To examine this, the influence of IL-1alpha -889, IL-1beta -511 and IL-1Ra VNTR genotypes and IL-10 genotypes/haplotypes (ACC, GCC and ATA) on IL-10 plasma levels, and a putative correlation between IL-10 and IL-1alpha plasma levels were analysed. Four hundred adult blood samples were obtained from the Finnish Red Cross Blood Transfusion Centre, Tampere. The IL-10, IL-1alpha, IL-1beta and IL-1Ra gene polymorphisms were analysed using PCR. IL-1beta and IL-10 plasma levels were measured using an ELISA method. Our results indicated that increased IL-10 plasma levels were associated with the ATA haplotype (p = 0.03) and, surprisingly, with the IL-1alpha allele 2 carrier status (p = 0.02) in healthy individuals. This IL-1alpha 2+/ATA+ combination was found in 93 subjects out of 400 analysed (23%) and was associated with significantly high IL-10 plasma levels (p = 0.002). When individuals were classified into three groups, with no detectable IL-10 plasma levels (n = 145), with moderate levels (n = 152) and with high levels (n = 100) of IL-10, the IL-1alpha2+/ATA+ combination was more likely present among those with high levels than among those with undetectable levels of IL-10 (OR = 3.3, 95% CI 1.8 - 6.0, p < 0.001) or those with moderate levels of IL-10 (OR = 2.0, 95% CI 1.2 - 3.6, p = 0.012). Besides the observed association between IL-1alpha genotype and IL-10 levels, a moderate correlation was found between IL-10 and IL-1beta levels (r = 0.6, p = 0.01) among IL-10 producers (n = 252). The present findings suggest that the genotype combination of IL-1alpha 2+/ATA+ has a regulatory effect on basal IL-10 levels and that among individuals with measurable IL-10 plasma levels, IL-1beta and IL-10 basal levels correlate. Until now, data on the feedback loop between IL-1 and IL-10 cytokines have been based on studies in vitro, but now our results suggest that this relationship may also exist in vivo.  相似文献   

3.
The effect of human recombinant tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) on interleukin 2 receptor (IL-2R) expression on YT cells was examined. IL-2R expression was assessed by flow cytometric analysis with a monoclonal antibody to IL-2R (anti-TAC). TNF-alpha, like IL-1 beta, induced increased levels of IL-2R expression on YT cells with similar kinetics of induction. Maximum induction occurred at 20 to 30 hr. On a molar basis. TNF was less active than IL-1 beta. RNA isolated from TNF-alpha- or IL-1 beta-treated YT cells contained increased levels of IL-2R-specific mRNA as indicated by slot blot analysis by using an IL-2R-specific mRNA probe. Kinetic and IL-1 beta mRNA expression studies indicated that the TNF effect was a direct one. Because IL-2R expression is known to be associated with lymphocyte activation, the present results suggest that TNF-alpha may play a role in the regulation of immune responses.  相似文献   

4.
The principal regulator of parathyroid hormone (PTH) secretion is ionized calcium, but other factors are also known to modulate PTH secretion, such as vitamin D, estrogen, and recently inorganic phosphate. Interleukin-1 (IL-1) possesses a wide variety of biological activities and is produced by leukocytes as well as by various other cells including cells from endocrine tissues and might play a role as a paracrine factor in the control of PTH secretion. We investigated the effectin vitroof IL-1β on PTH release, PTHmRNA and the mRNA for the extracellular calcium-sensing receptor (CaR) levels in preparations of bovine parathyroid cells. PTH secretion from cultured parathyroid tissue slices was significantly inhibited in a medium containing IL-1β at a concentration of 2000 pg/ml (PTH in % of control: 63.5 ± 5.3), n=10 (p<0.01). The inhibitory effect of IL-1β was not found in preparations of dispersed cells. The inhibitory effect of IL-1β could be counteracted by the IL-1 receptor antagonist (IL-1ra), indicating that the inhibitory effect was mediated through the specific IL-1 receptor on the parathyroid cells. IL-1β (2000 pg/ml) up-regulated CaRmRNA levels to 180% of control, whereas no change in PTHmRNA was found. IL-1ra abolished the upregulating effect of IL-1β on the CaRmRNA. This study demonstrates a direct effectin vitroof IL-1β on PTH secretion from bovine parathyroid glands, an effect which may be mediated at least in part through the specific IL-1 receptor causing an upregulation of the calcium-sensing receptor mRNA. IL-1 might therefore play a role as a auto- and/or paracrine factor in the regulation of the PTH secretion.  相似文献   

5.
Mitogen-activated protein (MAP) kinases have been suggested as potential mediators for interleukin 1beta (IL-1beta)-induced gene activation. This study investigated the role of the MAP kinases p38 and ERK2 in IL-1beta-mediated expression of the chemokine MCP-1 by human mesangial cells. Phosphorylation of p38 kinase, which is necessary for activation, increased significantly after IL-1beta treatment. p38 kinase immunoprecipitated from IL-1beta-treated cells phosphorylated target substrates to a greater extent than p38 kinase from controls. SB 203580, a selective p38 kinase inhibitor, was used to examine the role of p38 kinase in MCP-1 expression. SB 203580 decreased IL-1beta-induced MCP-1 mRNA and protein levels, but did not affect MCP-1 mRNA stability. Because NF-kappaB is necessary for MCP-1 gene expression, the effect of p38 kinase inhibition on IL-1beta induction of NF-kappaB was measured. SB 203580 (up to 25 microM) had no effect on IL-1beta-induced NF-kappaB nuclear translocation or DNA binding activity. Our previous work showed that IL-1beta also activates the MAP kinase ERK2 in human mesangial cells. PD 098059, a selective inhibitor of the ERK activating kinase MEK1, had no effect on IL-1beta-induced MCP-1 mRNA or protein levels, or on IL-1beta activation of NF-kappaB. These data indicate that p38 kinase is necessary for the induction of MCP-1 expression by IL-1beta, but is not involved at the level of cytoplasmic activation of NF-kappaB. In contrast, ERK2 does not mediate IL-1beta induced MCP-1 gene expression.  相似文献   

6.
Hepatocyte growth factor (HGF) can induce proliferation and migration of intestinal epithelial cells and has also been shown to be important in wound healing of inflamed mucosal tissues. HGF is known to be expressed along with interleukin-1 (IL-1) by inflamed mucosal tissues, yet the effect of HGF on IL-1-induced proinflammatory cytokine responses by colonic epithelial cells is unknown. In this report, we have examined the effect of HGF on IL-1-induced secretion of IL-8 by the Caco-2 colonic epithelial cell line. HGF stimulation alone had no effect on the secretion of IL-8 by the Caco-2 cells. However, culture of the cells with HGF and suboptimal levels of IL-1 resulted in a significant enhancement of IL-8 secretion compared to cells cultured with IL-1 alone. A similar effect was seen with HGF and IL-1 simulation of monocyte chemoattractant protein-1 secretion by the rat IEC-6 intestinal epithelial cell line. The enhancing effect of HGF was seen regardless of whether the culture medium contained serum or not. Simultaneous stimulation with HGF and IL-1 was required for the enhancing effect as cells pretreated with HGF for 24 h and then stimulated with IL-1 alone secreted IL-8 levels similar to that of cells stimulated with IL-1 alone. These results suggest that in addition to wound healing, HGF may play a role in the IL-1-induced chemokine response of epithelial cells in inflamed mucosal tissues.  相似文献   

7.
The outcome and severity of some diseases correlate with the dominance of either the T helper 1 (Th1) or Th2 immune response, which is stimulated by IL-12 or IL-4, respectively. In the present study we demonstrate that gamma interferon (IFN-gamma) secretion by murine spleen cells stimulated with KM(+), a mannose-binding lectin from Artocarpus integrifolia, is due to IL-12 induction, because (1) macrophages from several sources (including cell lines) produced IL-12 p40 in response to KM(+), and (2) lectin-free supernatants from J774 cell line cultures stimulated with KM(+) induced the secretion of IFN-gamma by spleen cell cultures, an effect blocked by the supernatant pretreatment with anti-IL-12 antibody. The known pattern of susceptibility of BALB/c mice to infection with Leishmania major, attributed to high levels of IL-4 production leading to a Th2 nonprotective immune response, was modified by administration of KM(+). Draining lymph node cells from these immunized BALB/c mice (in contrast to cells from animals immunized only with soluble leishmanial antigen [SLA]) secreted high levels of IFN-gamma and low levels of IL-4, which characterized a Th1 rather than a Th2 response pattern. The footpad thickness of BALB/c mice immunized with SLA plus KM(+) and challenged with L. major was similar to that of uninfected mice. This beneficial effect against leishmanial infection was blocked by pretreatment of these mice with anti-IL-12 antibody. These observations indicate that KM(+) induces IL-12 p40 in vivo and has a protective effect against L. major infection.  相似文献   

8.
Several recent studies indicate that interleukin-1 (IL-1) may be one of the major regulators of spermatogenesis. In the present work, the effects of various agents on rat Sertoli cell IL-1 production were investigated in vitro at different ages. In control cultures the IL-1 production by Sertoli cells from immature rats (20 days) was barely detectable; it markedly increased with the advancing age of the donors (35 and 45 days). Lipopolysaccharide and latex beads, two inducers of monocyte-macrophage IL-1 production, were able to stimulate the release of IL-1 by Sertoli cells at all ages studied; a decrease in the relative response to these inducers was noted as the age of the Sertoli cell donors increased. Under all the experimental conditions tested it appeared that the IL-1 produced was IL-1 alpha, not IL-1 beta. Whereas pachytene spermatocytes and early spermatids had no effect on IL-1 alpha production, residual bodies/cytoplasts from elongated spermatids dramatically stimulated Sertoli cell IL-1 production. In addition, FSH had no effect on IL-1 alpha levels. It is concluded that Sertoli cell IL-1 secretion can be stimulated in vitro by well known monocyte-macrophage activators. Furthermore, Sertoli cell IL-1 production is most probably crucially dependent on the phagocytosis of residual bodies in vivo.  相似文献   

9.
10.
Interleukin-1beta (IL-1beta) is synthesized in a variety of tissues, including the hypothalamus, where it is implicated in the control of food intake. The current studies were undertaken to investigate whether hypothalamic IL-1beta gene expression is subject to physiological regulation by leptin and glucocorticoids (GCs), key hormones involved in energy homeostasis. Adrenalectomy (ADX) increased hypothalamic IL-1beta mRNA levels twofold, measured by real-time PCR (P < 0.05 vs. sham-operated controls), and this effect was blocked by subcutaneous infusion of a physiological dose of corticosterone. Conversely, hypothalamic IL-1beta mRNA levels were reduced by 30% in fa/fa (Zucker) rats, a model of genetic obesity caused by leptin receptor mutation (P = 0.01 vs. lean littermates), and the effect of ADX to increase hypothalamic IL-1beta mRNA levels in fa/fa rats (P = 0.02) is similar to that seen in normal animals. Moreover, fasting for 48 h (which lowers leptin and raises corticosterone levels) reduced hypothalamic IL-1beta mRNA levels by 30% (P = 0.02), and this decrease was fully reversed by refeeding for 12 h. Thus leptin and GCs exert opposing effects on hypothalamic IL-1beta gene expression, and corticosterone plays a physiological role to limit expression of this cytokine in both the presence and absence of intact leptin signaling. Consistent with this hypothesis, systemic leptin administration to normal rats (2 mg/kg ip) increased hypothalamic IL-1beta mRNA levels twofold (P < 0.05 vs. vehicle), an effect similar to that of ADX. These data support a model in which expression of hypothalamic IL-1beta is subject to opposing physiological regulation by corticosterone and leptin.  相似文献   

11.
Human conditions of elevated interleukin-6 (IL-6) and transgenic mice overexpressing IL-6 have increased proteolytic degradation of insulin-like growth factor binding protein (IGFBP)-3. In addition, IL-6 alters the hepatic expression of insulin-like growth factor-I (IGF-I) and the IGFBPs in vitro. The aim of the present study was to investigate whether moderately elevated IL-6 levels have short-term effects on circulating IGF-I, IGFBP-1 and IGFBP-3 proteolysis in vivo. Healthy men received a 3-h IL-6 (n = 6) or saline (n = 6) infusion and blood samples were collected prior to and up to 8 h after the start of infusion. Free IGF-I, total IGF-I, IGFBP-1, insulin and cortisol were measured using immunoassays. Serum IGFBP-3 proteolysis was analyzed by Western immunoblot and by in vitro degradation of (125)I-IGFBP-3. We found that IL-6 concentrations reaching approximately 100 pg/ml significantly increased IGFBP-1 after the end of infusion in the absence of changes in insulin. In addition, plasma levels of cortisol were increased in response to IL-6 during and after infusion compared to saline. There was no effect of IL-6 on IGFBP-3 proteolysis, total IGF-I or free dissociable IGF-I. These data suggest that moderately elevated levels of IL-6 such as in the post-operative state or after exercise may contribute to increased levels of IGFBP-1. Although this study does not exclude that high levels and/or prolonged exposure to IL-6 may induce IGFBP-3 proteolysis in sepsis or chronic inflammatory disease, it suggests that IL-6 released from exercising skeletal muscle is not directly involved in proteolysis of circulating IGFBP-3.  相似文献   

12.
Previous studies have shown that the gut is a major source of norepinephrine (NE) released in early sepsis and that gut-derived NE plays an important role in up-regulating TNF-alpha expression in Kupffer cells (KC) via an alpha(2)-adrenoceptor (alpha(2)-AR) pathway. However, it remains unknown whether NE affects the release of other inflammatory cytokines such as IL-1beta and IL-10 and, if so, whether alpha(2)-AR is also involved in such a process. To study this, a branch of the portal vein in normal adult male rats was cannulated under anesthesia. NE (20 muM in ascorbate saline), NE plus yohimbine (YHB, a specific alpha(2)-AR antagonist, 1 mM) or vehicle (0.1% ascorbate saline) was infused at a rate of 13 mul/min for 2 h. The above rate of NE infusion was used to increase the portal level of NE to approximately 20 nM, similar to that observed in sepsis. Blood samples were then collected and serum levels of IL-1beta and IL-10 were measured. In addition, the KC was isolated from normal rats and stimulated with either NE (20 nM) or NE plus YHB (1 muM). The gene expression of IL-1beta and IL-10 in KC and their supernatant levels were assessed. The results indicate that serum levels of IL-1beta and IL-10 increased significantly after the intraportal infusion of NE. Co-administration of NE and YHB, however, significantly attenuated IL-1beta and IL-10 production. Similarly, IL-1beta and IL-10 gene expression and release from KC were up-regulated by NE stimulation, whereas YHB attenuated both cytokines. Thus, gut-derived NE up-regulates IL-1beta and IL-10 expression and release in the liver through an alpha(2)-AR pathway. Since adenylate cyclase activator forskolin prevents the increase in NE-induced IL-1beta and IL-10, the up-regulatory effect of NE on those cytokines appears to be mediated, at least in part, by inhibition of adenylate cyclase and reduction in intracellular cyclic AMP levels.  相似文献   

13.
Protease-activated receptor-4 (PAR4) is localized in primary sensory neurons and is believed to implicate in the modulation of nociceptive mechanisms. The pro-inflammatory cytokine interleukin-1β (IL-1β) is involved in the generation of hyperalgesia in pathological states such as neuropathy and inflammation. Previous studies have shown that IL-1β enhances the expression of PAR4 in many cell types but the effect of this cytokine on primary sensory neuron PAR4 expression is less clear. In the present study, we evaluated in rat dorsal root ganglion (DRG) neurons the influence of IL-1β on PAR4 mRNA and protein levels after IL-1β intraplantar injection into the hind-paw or treatment of cultured DRG neurons. The expression of PAR4 in cultured DRG neurons was also assessed after treatment with IL-1β with pre-addition of phorbol-12-myristate 13-acetate (PMA, a PKC activator) or chelerythrine chloride (a PKC inhibitor). We found that IL-1β intraplantar injection into the hind-paw or long-term exposure of cultured DRG neurons to IL-1β significantly increased the proportion of DRG neurons expressing PAR4 immunoreactivity. Real-time PCR and western blotting showed that IL-1β treatment also significantly elevated PAR4 mRNA and protein levels in DRG neurons. This IL-1β effect was enhanced in DRG neurons when DRG cultures were pre-treatment with the PMA. But pre-incubation with chelerythrine chloride strongly inhibited the IL-1β-induced increase of PAR4 mRNA and protein levels. These results demonstrate that the expression of PAR4 mRNA and protein induced by IL-1β is PKC signaling pathway dependent.  相似文献   

14.
Increases in the plasma levels of the inflammatory cytokines can be detected in various infectious and inflammatory diseases, but in healthy individuals these levels are in most cases low or undetectable. There is now increasing evidence that genes of the inflammatory cytokines are polymorphic and the various alleles may differ in their capability to produce the cytokine. We have measured the plasma levels IL-1 beta of 400 healthy blood donors and correlated these to the genotype (biallelelic base exchanges at the position - 889 of the IL-1 alpha gene, and at the position - 511 of the IL-1 beta gene and the pentaallelic VNTR in the second intron of the IL-1Ra gene). The median concentration of IL-1 beta was 5.8 pg/ml (upper and lower quartiles 2.2-13.6). The polymorphisms of the IL-1 beta and IL-1 Ra genes did not have any significant influence on the IL-1 beta levels, but the IL-1 alpha 2.2 homozygotes (32/400 blood donors) had significantly elevated levels (median 7.0 pg/ml, quartiles 2.2-22.4, one-way ANOVA p < 0.008 as compared to the IL-1 alpha 1.1 homozygotes and p < 0.02 as compared to the IL-1 alpha 1.2 heterozygotes). This effect of IL-1 alpha 2.2 homozygosity was more pronounced in donors, who also were carriers of the IL-1 beta allele 2. Thus these data suggest that this allele combination has a regulatory effect on basal IL-1 beta production.  相似文献   

15.
Transforming growth factor-beta1 (TGF-beta1) can inhibit cell proliferation or induce apoptosis in multipotent hematopoietic cells. To study the mechanisms of TGF-beta1 action on primitive hematopoietic cells, we used the interleukin-3 (IL-3)-dependent, multipotent FDCP-Mix cell line. TGF-beta1-mediated growth inhibition was observed in high concentrations of IL-3, while at lower IL-3 concentrations TGF-beta1 induced apoptosis. The proapoptotic effects of TGF-beta1 occur via a p53-independent pathway, since p53(null) FDCP-Mix demonstrated the same responses to TGF-beta1. IL-3 has been suggested to enhance survival via an increase in (antiapoptotic) Bcl-x(L) expression. In FDCP-Mix cells, neither IL-3 nor TGF-beta1 induced any change in Bcl-x(L) protein levels or the proapoptotic proteins Bad or Bax. However, TGF-beta1 had a major effect on Bcl-2 levels, reducing them in the presence of high and low concentrations of IL-3. Overexpression of Bcl-2 in FDCP-Mix cells rescued them from TGF-beta1-induced apoptosis but was incapable of inhibiting TGF-beta1-mediated growth arrest. We conclude that TGF-beta1-induced cell death is independent of p53 and inhibited by Bcl-2, with no effect on Bcl-x(L). The significance of these results for stem cell survival in bone marrow are discussed.  相似文献   

16.
Primary and passaged human synovial fibroblasts isolated from rheumatoid pannus were treated with recombinant interleukin-1 (IL-1) alpha or beta, tumor necrosis factor-alpha (TNF), or phorbol myristate acetate (PMA) to determine the effects of these stimuli on the relative expression of stromelysin, collagenase, and tissue inhibitor of metalloproteinases (TIMP). The steady-state mRNA levels for these genes and glyceraldehyde-3-phosphate dehydrogenase were determined on Northern blots. Immunoblot analyses of the conditioned media using monoclonal antibodies generated against recombinant human stromelysin, collagenase, or TIMP showed that protein levels reflected the corresponding steady-state mRNA levels. The results revealed that 1) stromelysin and collagenase were not always coordinately expressed; 2) IL-1 was more potent than TNF or PMA in the induction of stromelysin expression; 3) neither IL-1 nor TNF significantly affected TIMP expression; 4) PMA induced both metalloproteinase and TIMP expression; and 5) the combination of IL-1 plus TNF had a synergistic effect on stromelysin expression. Dose response and time course experiments demonstrated that the synergistic effect of IL-1 plus TNF occurred at saturating concentrations of each cytokine and lasted for 7 days. In summary, the ability of IL-1 and TNF to preferentially induce stromelysin and collagenase expression, versus TIMP, may define a pivotal role for these cytokines in the pathogenesis of rheumatoid arthritis.  相似文献   

17.
Multiple changes in HDL metabolism occur during infection and inflammation that could potentially impair the antiatherogenic functions of HDL. Scavenger receptor class B type I (SR-BI) promotes cholesterol efflux from peripheral cells and mediates selective uptake of cholesteryl ester into hepatocytes, thereby playing a pivotal role in reverse cholesterol transport. We studied the effect of endotoxin (lipopolysaccharide, LPS) and cytokines [tumor necrosis factor (TNF) and interleukin 1 (IL-1)] on hepatic SR-BI mRNA and protein levels in Syrian hamsters. LPS significantly decreased SR-BI mRNA levels in hamster liver. This effect was rapid and sustained, and was associated with a decrease in hepatic SR-BI protein levels. High cholesterol diet did not change hepatic SR-BI mRNA levels, and LPS was able to decrease SR-BI mRNA levels during high cholesterol feeding. TNF and IL-1 decreased SR-BI mRNA levels in the liver, and the effects of TNF and IL-1 were additive. TNF and IL-1 also decreased SR-BI levels in Hep3B hepatoma cells. More importantly, TNF and IL-1 decreased the uptake of HDL cholesteryl ester into Hep3B cells. In addition, we studied the effect of LPS on SR-BI mRNA in RAW 264.7 cells, a macrophage cell line. LPS rapidly decreased SR-BI mRNA levels in RAW 264.7 cells, but the effect was not sustained and did not lead to a reduction in SR-BI protein levels. Our results suggest that the decrease in hepatic SR-BI levels due to LPS and cytokines during infection and inflammation may decrease selective uptake of cholesteryl ester into the liver and result in impaired reverse cholesterol transport.  相似文献   

18.
Formation of antigenic peptides by the multicatalytic proteinase complex (MPC, proteasome) is facilitated by incorporation of three subunits (LMP2, LMP7 and LMP10) that are inducible by IFN-gamma and TNF-alpha. These cytokines, or their functional homologues (e.g. TNF-beta), are released from many cells including Th(1)lymphocytes. To learn more about the relationship between control of cellular immunity and expression of LMP subunits, we measured LMP7 levels in human umbilical vein endothelial cells of cytokines promoting cellular immunity (IL-12, IFN-gamma, TNF-alpha) or humoral immunity (IL-10, IL-6). Little or no effect was seen when cells were exposed to IL-6, IL-10 or IL-12 alone. IFN-gamma upregulated LMP7 levels, as did TNF-alpha to a lesser extent. IL-10 downregulated IFN-gamma-induced increases in LMP7 levels, as did IL-12. The findings indicate that regulation of levels of LMP7 is similar to and may be coupled with that of other molecules required for MHC class I-dependent immunity, and depends primarily on cytokines released by Th(1)helper lymphocytes.  相似文献   

19.
Our previous report has shown that Irsogladine maleate (IM) counters and obviates the reduction in gap junction intercellular communication (GJIC) and the increase in IL-8 levels, respectively, induced by outer membrane protein 29 from Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) in cultured human gingival epithelial cells (HGEC). In addition, IM suppresses the increase in the secretion of IL-8 caused by whole live A. actinomycetemcomitans. These findings implicate the modulation of IL-8 levels by IM in abolishment of the reduction of GJIC in HGEC. Tight junctions are also responsible for cell-cell communication. Zonula occludens protein-1 (ZO-1) is a major tight junction protein. To investigate the regulatory mechanism of intercellular communication mediated by IM, in the present study, we focused on the involvement of IL-8 in A. actinomycetemcomitans-induced change in GJIC and ZO-1 expression in HGEC. IM countered the A. actinomycetemcomitans-induced reduction in levels of Connexin (CX) 43, suggesting that it could abolish the A. actinomycetemcomitans-induced reduction in GJIC in HGEC. CXCR-1 is a receptor of IL-8. The simultaneous addition of A. actinomycetemcomitans and anti-CXCR-1 antibody also abrogated the repression of GJIC and CX43 expression by A. actinomycetemcomitans in HGEC, although the anti-CXCR-1 antibody was less effective than IM. IM inhibited the IL-8-induced reduction in CX43 levels and GJIC in HGEC. IM countered the A. actinomycetemcomitans-induced reduction in the expression of ZO-1, although anti-CXCR-1 antibody did not influence the decrease in ZO-1 mRNA levels caused by A. actinomycetemcomitans. Furthermore, IL-8 had little effect on the mRNA levels of ZO-1. These findings suggest that IL-8 mediates the A. actinomycetemcomitans-induced reduction of GJIC and CX43 expression in HGEC. The regulation of IL-8 levels by IM in HGEC is partially involved in abrogation of the reduction of GJIC and CX43 expression by A. actinomycetemcomitans. Furthermore, the regulatory effect of IM on the expression of CX43 and ZO-1 is different.  相似文献   

20.
The purpose of this study was to examine the effects of IL-1 beta on integrin expression in MG-63 human osteosarcoma cells. Human recombinant IL-1 beta (rIL-1 beta) produced significant increases in both alpha 2- and alpha 5-subunit mRNA levels, as well as a smaller increase in alpha v-subunit mRNA. In contrast, IL-1 beta decreased alpha 4-subunit mRNA levels by approximately 30% relative to untreated controls. These findings suggest that human IL-1 beta differentially regulates expression of integrins. When cultures were treated with both IL-1 beta and the cyclooxygenase inhibitor, indomethacin, the expression of alpha 2-, alpha 5-, and alpha v-subunit mRNA levels were dramatically increased relative to untreated controls; co-treatment with 0.5 mM prostaglandin E2 (PGE2) partially reversed this effect. Indomethacin alone did not affect integrin mRNA levels. Treatment with IL-1 beta or IL-1 beta + indomethacin also induced significant changes in MG-63 morphology (i.e., increased cell elongation) and increased the ability of cells to contract collagen gels. PGE2 reversed the above effects on cell morphology and gel contraction. These findings indicate that (a) IL-1 beta differentially regulates the expression of integrins and (b) that PGE2, which is induced by IL-1 beta, may provide a negative feedback loop which counteracts the stimulatory effect of IL-1 beta on integrin gene expression. It is suggested that products of inflammation may affect cell behavior by differentially regulating the expression of various integrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号