首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Bio-sludge from a wastewater treatment plant could be used as an adsorbent of vat dye from textile wastewater. Resting bio-sludge gave a higher adsorption capacity than dead bio-sludge. The resting bio-sludge from a textile wastewater treatment plant gave relatively high COD, BOD5 and dye adsorption capacity of 364.4 +/- 4.3, 178.0 +/- 9.0 and 50.5 +/- 1.3 mg/g of bio-sludge, respectively, in synthetic textile wastewater containing 40 mg/l Vat Yellow 1. Another advantage of the bio-sludge was that, after washing with 0.1 N NaOH solution, it was reusable without any activity loss. Through treatment with a sequencing batch reactor (SBR) system, both organic and dye in STIWW could be removed. The maximum dye (Vat Yellow 1), COD, BOD5 and TKN removal efficiencies of the SBR system under an MLSS of 2000 mg/l and an HRT of three days were 98.5 +/- 1.0%, 96.9 +/- 0.7%, 98.6 +/- 0.1% and 93.4 +/- 1.3%, respectively. Although, the dye and organic removal efficiencies of the SBR system with real textile wastewater were quite low, they could be increased by adding organic matters, especially glucose. The dye, COD, BOD5 and TKN removal efficiencies of the SBR system with glucose (0.89 g/l) supplemented textile industrial wastewater were 75.12 +/- 1.2%, 70.61 +/- 3.4%, 96.7 +/- 0.0%, and 63.2 +/- 1.1%, respectively.  相似文献   

2.
Living bio-sludge from domestic wastewater treatment plant was used as adsorbent of heavy metals (Pb(2+), Ni(2+)) and its adsorption capacity was about 10-30% reduced by autoclaving at 110 degrees C for 10 min. The living bio-sludge acclimatized in synthetic industrial estate wastewater (SIEWW) without heavy metals showed the highest Pb(2+) and Ni(2+) adsorption capacities at 840+/-20 and 720+/-10 mg/g bio-sludge, respectively. The adsorbed Pb(2+) and Ni(2+) were easily eluted (70-77%) from bio-sludge by washing with 0.1 mol/l HNO(3) solution. The heavy metals (Pb(2+), Ni(2+)) removal efficiency of both SBR and GAC-SBR systems were increased with the increase of hydraulic retention time (HRT), or the decrease of organic loading. The SBR system showed higher heavy metals removal efficiency than GAC-SBR system at the same organic loading or HRT. The Pb(2+), Ni(2+), BOD(5), COD and TKN removal efficiencies of GAC-SBR system were 88.6+/-0.9%, 94.6+/-0.1%, 91.3+/-1.0%, 81.9+/-1.0% and 62.9+/-0.5%, respectively with industrial estate wastewater (IEWW) with 410 mg/l glucose, 5 mg/l Pb(2+) and 5 mg/l Ni(2+) under organic loading of 1.25 kg BOD(5)/m(3) d (HRT of 3 days). The bio-sludge quality (sludge volume index: SVI) of the system was less than 80 ml/g. The excess sludge from both SBR and GAC-SBR systems with SIEWW under the organic loading of 1.25-2.50 kg BOD(5)/m(3) d contained Pb(2+) and Ni(2+) at concentrations of 240-250 mg Pb(2+)/g bio-sludge and 180-210 mg Ni(2+)/g bio-sludge, respectively.  相似文献   

3.
Both resting (living) and autoclaved (dead) bio-sludges showed almost the same Cu2+ and Zn2+ adsorption capacities with synthetic industrial estate wastewater (SIEWW). The resting bio-sludge showed not only Cu2+ and Zn2+ adsorption abilities but also organic matter adsorption ability. But, the organic matter (COD and BOD5) adsorption ability of bio-sludge with SIEWW containing 60 mg/L Cu2+ was about half of that with SIEWW containing 60 mg/L Zn2+. The adsorbed Cu2+ and Zn2+ were easily eluted (70-75%) from bio-sludge with 0.1 N HNO3 and 0.1 M EDTA solutions. Bio-sludge from a wastewater treatment plant could be used as an adsorbent for metal ions (Cu2+ and Zn2+). Cu2+ and Zn2+ could repress the SBR system efficiency but its efficiency could be increased with the increase of mixed liquor suspended solids (MLSS), and Cu2+ had more effect than Zn2+ to repress the system efficiency. The SBR system showed very low removal efficiencies of the pollutants with industrial estate wastewater (IEWW), but its pollutant removal efficiencies with IEWW could be increased with the addition of glucose. The Zn2+, Cu2+, BOD5, COD and TKN removal efficiencies of the system with IEWW containing 1.27 g/L glucose, 10 mg/L Cu2+ and 10 mg/L Zn2+ under MLSS of 4500 mg/L were 92.61 +/- 0.28%, 83.77 +/- 0.93%, 98 +/- 0%, 92 +/- 0% and 78.1 +/- 0.1%, respectively.  相似文献   

4.
The main objective of this study is to assess the achievability of stringent discharge criteria i.e. BOD(5)<15 mg/L, TSS<15 mg/L and NH(4)-N<1mg/L during the treatment of tomato processing wastewater with COD of 2800-15,500 mg/L, BOD(5) of 1750-7950 mg/L, TKN of 48-340 mg/L and NH(4)-N of 21-235 mg/L. Two treatment systems, a UASB-aerobic system and a UASB-anoxic-aerobic system were tested. Furthermore due to alkalinity deficiency, in the raw wastewater, the study explored varying UASB effluent recirculation flowrates to the UASB influent to reduce additional alkalinity requirements. The UASB-anoxic-aerobic system was effective in treating tomato canning wastewater at an overall HRT of 1.75 days while achieving 98.5% BOD(5), 95.6% COD, 84% TSS and 99.5% NH(4)-N removal producing effluent BOD(5), COD, TSS, NH(4)-N, TKN, NO(2)-N, NO(3)-N and PO(4)-P of 10, 70, 15, 0.5, 3, 0, 60 and 4 mg/L, respectively. The biogas yield was 0.43 m(3)/kg COD removed.  相似文献   

5.
Acetogenic bacteria BP103 cells could be used as the absorbent for melanoidin pigment (MP) and molasses wastewater (MWW). The maximum MP adsorption yield of this strain observed from the dead (autoclaved) cell. It was two times higher than that with resting cells. However, the MP adsorption yield of the strain was 50-60% decreased by acclimatization with the media containing MP. The deteriorated cells (MP-adsorbed cells) could be recovered by washing with 0.1% SDS, 0.1% Tween 80 and 0.1 mol/L NaOH solutions. Among them, 0.1 mol/L NaOH solution was most suitable according to highest elution ability and no-effect to the MP adsorption capacity (The adsorption yield of deteriorated cell was reduced only 10% after washing three times with 0.1 mol/L NaOH solution). In SBR system, the strain showed very low MP removal yield with both molasses wastewater (MWW) from the anaerobic pond (An-MWW) and stillage from an alcohol factory (U-MWW). However, the MP removal yield was increased by supplementation with carbon sources (glucose). Also, the MP removal efficiency was increased with the increase of supplemented-glucose concentration. The highest COD, BOD(5), TKN and MP removal efficiencies of the SBR system with 10 times-diluted An-MWW solution containing 30 g/L glucose under HRT of seven days were 65.2+/-2.5%, 82.8+/-3.4%, 32.1+/-0.8% and 50.2+/-3.7%, respectively. The large molecular weight fraction of MP in both U-MWW and An-MWW solutions were rapidly removed by acetogenic bacteria BP103, while the small molecular weight fractions of MP still remained in the effluent.  相似文献   

6.
The aim of this work was to study the efficiency of the packed cage rotating biological contactor (RBC) system with synthetic wastewater (SWW) containing 800 mg/l BOD(5) with various cyanide residue concentrations and hydraulic loading time. The results showed that cyanide had a negative effect to both the system's efficiency and bio-film quality. An increase in cyanide concentration led to a decrease in bio-film growth and the consequent reduction in the removal efficiency of the system. Also, the effluent suspended solids (SS) of the system was increased with increasing cyanide concentrations because the bio-film detached from the media due to the toxicity of the cyanide residue. The system showed the highest COD, BOD(5), TKN and cyanide removal efficiencies of 94.0 +/- 1.6%, 94.8 +/- 0.9%, 59.1 +/- 2.8% and 95.5 +/- 0.6%, respectively, with SWW containing 5 mg/l cyanide under HRT of 8 days, while they were only 88.8 +/- 0.7%, 89.5 +/- 0.5%, 40.3 +/- 1.1% and 93.60 +/- 0.09%, respectively, with SWW containing 40 mg/l cyanide. In addition, the effluent ammonia, nitrite and nitrate were increased with increases in cyanide concentration or loading. However, the system with SWW containing the highest cyanide concentration of 40 mg/l showed almost constant COD and BOD(5) removal efficiencies of 89% and 90%, even when the system was controlled under the lowest HRT of 8 h.  相似文献   

7.
Surface flow constructed wetland for heavy oil-produced water treatment   总被引:1,自引:0,他引:1  
Heavy oil-produced water from China' Liaohe Oilfield was purified in a surface flow constructed wetland (SFCW) during a 3-yr field experiment. Treatment showed high mean removal efficiencies of 80%, 93%, 88% and 86% for COD, oil, BOD and TKN, respectively for reed bed #1 and 71%, 92%, 77%, and 81% for COD, oil, BOD and TKN, respectively for reed bed #2. The results also showed that in the third year of the system's operation, the oil-produced water had mainly positive impacts on the reed's health parameters. Thus, reed can be used as a feasible wetland macrophyte for treating such wastewater, and this SFCW system can operate for a long time.  相似文献   

8.
Performance of mediator-less and membrane-less microbial fuel cell (ML-MFC) was evaluated to treat synthetic wastewater and actual sewage. The ML-MFC gave COD and BOD removal efficiencies of 88% and 87%, respectively, and TKN removal was around 45-50%. Biomass granulation was observed in the anode compartment of ML-MFC. Effect of distance between the electrodes and total surface area of anode on electricity production was evaluated under variable external resistance. Maximum power density of 10.9 and 10.13 mW/m2 was observed at lower spacing between the electrodes (20 cm) and for lesser surface area of the anode, respectively. With variation in the carbon source in the feed, variation in power production was observed.  相似文献   

9.
The pilot-scale wastewater treatment system used in this study comprised a 40-l UASB reactor (6-h HRT) followed by three duckweed ponds in series (total HRT 15 days). During the warm season, the treatment system achieved removal values of 93%, 96% and 91% for COD, BOD and TSS, respectively. Residual values of ammonia, TKN and total phosphorus were 0.41 mg N/l, 4.4 mg N/l and 1.11 mg P/l, with removal efficiencies of 98%, 85% and 78%, respectively. The system achieved 99.998% faecal coliform removal during the warm season with final effluent containing 4 x 10(3) cfu/100 ml. During the winter, the system was efficient in removing COD, BOD and TSS but not nutrients. The system was deficient in the removal of faecal coliforms during the winter, producing effluent with 4.7 x 10(5) cfu/100 ml. During the warm season, the N removal consisted of 80% by plant uptake, 5% by sedimentation and 15% unaccounted for. A duckweed production rate of 33 t dry matter per hectare per 8 months was achieved.  相似文献   

10.
The potential of three oxidoreductases, a laccase preparation of Pleurotus sajor-caju PS-2001, horseradish peroxidase (HRP) and a microbial peroxidase (MP) was evaluated for the decolorization of disperse textile dyes (CI Disperse Red 343, CI Disperse Red 167 and CI Disperse Blue 148) used in polyester dyeing. Decolorization was studied in aqueous solutions varying in dye concentration, pH, temperature, enzyme concentration and the addition of mediators HBT and syringaldazine. The best conditions found for Disperse Red 343 with laccase, HRP and MP were: 15 mg L?1 dye concentration, 50°C, pH 3.0 for laccase and pH 5.0 for peroxidases. Without mediator, the highest decolorizaton results (38.5% and 58.6%) were achieved with the highest tested concentrations of laccase (10 U mL?1) and HRP (89.7 U mL?1), respectively, but no significant difference in decolorization was found for the tested MP concentrations (29.9–89.7 U mL‐1). HBT or syringaldazine increased decolorization with peroxidases significantly, but no effect was observed for the laccase. Decolorization of Disperse Red 167 (up to 15%) and Disperse Blue 148 (up to 25%) was much lower than of Disperse Red 343. With respect to enzyme concentration, the use of mediator and under the selected test conditions the laccase of P. sajor-caju PS-2001 turned out to be more efficient in disperse dye decolorization, than peroxidases HRP and MP.  相似文献   

11.
Li Q  Yue Q  Su Y  Gao B 《Bioresource technology》2011,102(9):5290-5296
The adsorption of a reactive dye (Reactive Yellow K-4G) and a disperse dye (Disperse yellow brown S-2RFL) onto polyepicholorohydrin-dimethylamine (EPIDMA) cationic polymer modified bentonite (EPIDMA-bentonite) in batch adsorber was studied, respectively. Two equilibrium models, the Langmuir and Freundlich models were selected to follow the adsorption process. It was shown that the equilibrium experimental data for reactive dye adsorption could be well described by the Freundlich model, but for disperse dye the Langmuir model could be better. Based on the well correlated adsorption isotherm, an adsorption process design model was developed for the design of a two-stage batch adsorber to predict the minimum amount of adsorbent to achieve a specified percentage of dye removal at a given volume of wastewater effluents. The adsorption process design analysis indicated that compared with the single-stage batch adsorption, the two-stage process could significantly save adsorbent to meet the higher demands of dye removal efficiency.  相似文献   

12.
The effect of substrate (glucose) concentrations and alkalinitiy (NaHCO3) on the decolorization of a synthetic wastewater containing Congo Red (CR) azo dye was performed in an upflow anaerobic sludge blanket (UASB). Color removal efficiencies approaching 100% were obtained at glucose-COD concentrations varying between 0 and 3000 mg/l. The methane production rate and total aromatic amine (TAA) removal efficiencies were found to be 120 ml per day and 43%, respectively, while the color was completely removed during glucose-COD free operation of the UASB reactor. The complete decolorization of CR dye under co-substrate free operation could be attributed to TAA metabolism which may provide the electrons required for the cleavage of azo bond in CR dye exist in the UASB reactor. No significant differences in pH levels (6.6-7.4), methane production rates (2000-2700 ml/day) and COD removal efficiencies (82-90%) were obtained for NAHCO3 concentrations ranging between 550 and 3000 mg/l. However, decolorization efficiency remained at 100% with decreasing NaHCO3 concentrations as low as 250 mg/l in the feed. An alkalinity/COD ratio of 0.163 in the feed was suggested for simultaneous optimum COD and color removal.  相似文献   

13.
A packed cage rotating biological contactor (RBC) system was applied to treat wastewater containing Cl2 residue with concentration even up to 20 mg/L. However, Cl2 exhibited a negative effect on the efficiency of the system as evidenced by the decrease in the growth of bio-film. It could be concluded that the removal efficiency of the system decreased with the increase of Cl2 concentration or Cl2 loading. Due to inhibition of bio-film growth by the effects of Cl2 residue, the effluent suspended solids (SS) of the system was decreased. The bio-film was easily detached from the media under high growth rate conditions resulting in an increase of effluent SS. The COD and BOD5 removal efficiencies of the system under the highest organic and Cl2 loadings of 4.07 g BOD5/m2 d and 203.6 mg Cl2/m2 d, respectively, were 58.0+/-3.2% and 60.7+/-3.9%, respectively, while they were up to 83.3+/-1.8% and 85.8+/-2.0%, respectively, under the lowest organic and Cl2 loading of 2.04 g BOD5/m2 d and 25.5 mg Cl2/m2 d. However, the effluent SS of the system under above operating conditions was lower than 20 mg/L.  相似文献   

14.
In this study, salt fractionated bitter gourd (Momordica charantia) peroxidase was used for the decolorization of water-insoluble disperse dyes; Disperse Red 17 and Disperse Brown 1. Effect of nine different redox mediators; bromophenol, 2,4-dichlorophenol, guaiacol, 1-hydroxybenzotriazole, m-cresol, quinol, syringaldehyde, violuric acid, and vanillin on decolorization of disperse dyes by bitter gourd peroxidase has been investigated. Among these redox mediators, 1-hydroxybenzotriazole was the most effective mediator for decolorization of both the dyes by peroxidase. Bitter gourd peroxidase (0.36 U/mL) could decolorize Disperse Red 17 maximally 90% in the presence of 0.1 mM 1-hydroxybenzotriazole while Disperse Brown 1 was decolorized 65% in the presence of 0.2 mM 1-hydroxybenzotriazole. Maximum decolorization of these dyes was obtained within 1 h of incubation at pH 3.0 and temperature 40°C. The application of such enzyme plus redox mediator systems may be extendable to other recalcitrant and water insoluble synthetic dyes using novel redox mediators and peroxidases from other new and cheaper sources.  相似文献   

15.
This study aims to explore a novel application of dewatered alum sludge cakes (DASC) as the main medium in a single model reed bed to treat phosphorus-rich animal farm wastewater under "tidal flow" operation on a long-term basis. It is expected that the cakes act as the carrier for developing biofilm and also serve as adsorbent to enhance phosphorus (P) immobilization. Results have demonstrated that average removal efficiencies of 73.3+/-15.9% for COD, 82.9+/-12.3% for BOD(5), 86.4+/-6.0% for RP (reactive P), 88.6+/-7.2% for soluble reactive P (SRP) and 77.6+/-17.5% for SS can be achieved during the two year's operation. More significantly, the "P-adsorption proportion" by DASC in the reed bed is 42% of the overall P removal. The remaining removal of P may be contributed by the trapping and filtration process of DASC. Therefore, the lifetime of the DASC in reed bed is reasonably longer than that determined from the batch isotherm test.  相似文献   

16.
煤渣-草炭基质垂直流人工湿地系统对城市污水的净化效果   总被引:41,自引:3,他引:38  
垂直流人工湿地系统不但具有较高的水力负荷率(54—64cm.^-1),而且对有机物和N、P都具有较高的去除效果.其对化粪池出水中的COD、BOD5、NIA4^+-N和总P的去除率分别为76%--87%,88%--92%,75%--85%和77%--91%.处理出水中COD、BOD5、NH4^+-N和总P的平均浓度分别小于60、20、25和2.0mg.L^-1.植物种植试验结果表明,种植风车草可提高氨氮、总N和总P的去除率,分别为2%--3%、4%--6%、10%--14%.  相似文献   

17.
人工湿地对猪场废水有机物处理效果的研究   总被引:69,自引:1,他引:68  
分别以香根草 (Vetiveriazizanioides)和风车草 (Cyperusalternifolius)为植被 ,按 1.0m× 0 .5m×0 .8m建立人工湿地 ,通过 4季测试 ,研究其对猪场废水有机物的净化功能及其随季节、进水浓度及水力停留时间变化的规律 .结果表明 ,4个季节香根草或风车草人工湿地对COD和BOD有较稳定的去除效果 ,两湿地抗有机负荷冲击能力强 .在春季 ,停留时间 1~ 2d ,COD和BOD去除率分别为 70 %和 80 %;在夏季 ,进水COD高达 10 0 0~ 140 0mg·L-1情况下 ,COD去除率接近 90 %;在秋季 ,停留时间 1~ 2d ,COD和BOD去除率分别为 5 0 %~ 6 0 %和 5 0 %;在冬季 ,进水COD达 10 0 3mg·L-1情况下 ,COD去除率在 70 %以上 .COD、BOD和SS的去除率在两湿地间没有显著差异 .人工湿地污染物 (Y)随水力停留时间 (t)延长的降解遵从指数方程规律Yt=Y0 ·e( -kt) .在相同停留时间时 ,随进水污染物浓度 (x)提高的出水污染物浓度 (y)的回归关系遵从直线方程规律 y =a+bx .  相似文献   

18.
The efficiency of basic, direct and reactive dye removal from water by narrow-leaved cattail (NLC) powder treated with distilled water (DW-NLC), 37% formaldehyde+0.2 N sulfuric acid (FH-NLC), or 0.1 N sodium hydroxide (NaOH-NLC) at various pH levels (3, 5, 7, and 9) was tested. Desorption of the adsorbed dyes was also investigated. The type of NLC treatment and pH of the dye solution had little effect on removal of basic dyes, and efficiencies ranged from 97% to 99% over the range of pH used. Over a wide range of pH levels, all types of treated cattail powder had negative charges and probably attracted the basic dyes possessing positive charges. Efficiency of removal by the three NLC treatments ranged from 37% to 42% for direct dyes and from 22% to 54% for direct dyes at pH 7. The pH of the dye solution had substantial effects on the efficiency of removal in direct and reactive dyes. Dye removal was highest at pH 3, with 99% for a direct dye (Sirius Red Violet RL) and 96% for a reactive dye (Basilen Red M-5B). There was mutual attraction between negatively charged direct dye molecules and positively charged molecules on the surface of the FH-treated cattail. In tests of desorption of dyes from cattail in distilled water, the desorption percentage for FH-NLC after adsorbing basic, direct and reactive dyes was 6%, 10% and 35%, respectively, which indicated a chemisorption mechanism for basic and direct dyes and some physiosorption for reactive dyes.  相似文献   

19.
Pre-treatments are screening, catch basins, flotation, equalization, and settlers for recovering proteins and fats from abattoir wastewater. With chemical addition, dissolved air flotation (DAF) units can achieve chemical oxygen demand (COD) reductions ranging from 32% to 90% and are capable of removing large amounts of nutrients. Aerobic trickling towers reduced soluble COD by additional 27% but did not reduced total COD. Chemical-DAF reduced 67% of total COD and soluble COD. About 40-60% of the solids or approximately 25-35% of the biological oxygen demand (BOD) load can be separated by pre-treatment screening and sedimentation. Anaerobic systems are lagoon, anaerobic contact (AC), up-flow anaerobic sludge blanket (UASB), anaerobic sequence batch reactor (ASBR), and anaerobic filter (AF) processes. Abattoir wastewater is well suited to anaerobic treatment because it is high in organic compounds. Typical reductions of up to 97% BOD, 95% SS and 96% COD are reported. UASB's average COD removal efficiencies are of 80-85%. UASB seems to be a suitable process for the treatment of abattoir wastewater, due to its ability to maintain a sufficient amount of viable sludge. Wastewater in abattoirs can be reduced by treatment of immersion chiller effluent by membrane filtration which can produce recyclable water. Total organic C can be reduced below 100mg/L, and bacteria can not pass through the membrane pores. The abattoir waste minimization options are also discussed.  相似文献   

20.
A study was conducted to examine the potential of jute processing waste (JPW) for the treatment of wastewater contaminated with dye and other organics generated from various activities associated with jute cultivation and fibre production. Adsorption studies in batch mode have been conducted using dye solution as an adsorbate and JPW as an adsorbent. A comparative adsorption study was made with standard adsorbents such as powdered and granular activated carbon (PAC and GAC, respectively). A maximum removal of 81.7% was obtained with methylene blue dye using JPW as compared to 61% using PAC and 40% using GAC under similar conditions. The adsorption potential of JPW was observed to be dependent on various parameters such as type of dye, initial dye concentration, pH and dosage of adsorbent. The batch sorption data conformed well to the Langmuir and Freundlich isotherms. However, lower BOD (33.3%) and COD (13.8%) removal from retting effluent was observed using JPW as compared to 75.6% BOD removal and 71.1% COD removal obtained with GAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号