首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured ventilation in nine young adults while they breathed pure O2 after breathing room air and after 5 and 25 min of hypoxia. With isocapnic hypoxia (arterial O2 saturation 80 +/- 2%) mean ventilation increased at 5 min and then declined, so that at 25 min values did not differ from those on room air. After 3 min of O2 breathing, ventilation was greater than that on room air or after 25 min of isocapnic hypoxia, whether the hyperoxia had been preceded by hypoxia or normoxia. During transitions to pure O2 breathing, ventilation was analyzed breath by breath with a moving average technique, searching for nadirs before and after increases in PO2. After both 5 and 25 min of hypoxia, O2 breathing was associated with transient depressions of ventilation, which were greater after 25 min than after 5 min. Significant depressions were not observed when hyperoxia followed room air breathing, and O2-induced nadirs after hypoxia were lower than those observed during room air breathing. O2 transiently depressed ventilation after hypoxia but not after room air breathing. These results suggest that the normal ventilatory response to isocapnic hypoxia has two components, an excitatory one from peripheral chemoreceptors, which is turned off by O2 breathing, and a slower inhibitory one, probably of central origin, which is affected less promptly by O2 breathing.  相似文献   

2.
In adult humans the ventilatory response to sustained hypoxia (VRSH) is biphasic, characterized by an initial brisk increase, due to peripheral chemoreceptor (PC) stimulation, followed by a decline attributed to central depressant action of hypoxia. To study the effects of selective stimulation of PC on the ventilatory response pattern to hypoxia, the VRSH was evaluated after pretreatment with almitrine (A), a PC stimulant. Eight subjects were pretreated with A (75 mg po) or placebo (P) on 2 days in a single-blind manner. Two hours after drug administration, they breathed, in succession, room air (10 min), O2 (5 min), room air (5 min), hypoxia [25 min, arterial O2 saturation (SaO2) = 80%], O2 (5 min), and room air (5 min). End-tidal CO2 was kept constant at the normoxic base-line values. Inspiratory minute ventilation (VI) and breathing patterns were measured over the last 2 min of each period and during minutes 3-5 of hypoxia, and nadirs in VI were assessed just before and after O2 exposure. Independent of the day, the VRSH was biphasic. With P and A pretreatment, early hypoxia increased VI 4.6 +/- 1 and 14.2 +/- 1 (SE) l/min, respectively, from values obtained during the preceding room-air period. On A day the hypoxic ventilatory decline was significantly larger than that on P day, and on both days the decline was a constant fraction of the acute hypoxic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

4.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

5.
Determining response dynamics of hypoxic air hunger may provide information of use in clinical practice and will improve understanding of basic dyspnea mechanisms. It is hypothesized that air hunger arises from projection of reflex brain stem ventilatory drive ("corollary discharge") to forebrain centers. If perceptual response dynamics are unmodified by events between brain stem and cortical awareness, this hypothesis predicts that air hunger will exactly track ventilatory response. Thus, during sustained hypoxia, initial increase in air hunger would be followed by a progressive decline reflecting biphasic reflex ventilatory drive. To test this prediction, we applied a sharp-onset 20-min step of normocapnic hypoxia and compared dynamic response characteristics of air hunger with that of ventilation in 10 healthy subjects. Air hunger was measured during mechanical ventilation (minute ventilation = 9 +/- 1.4 l/min; end-tidal Pco(2) = 37 +/- 2 Torr; end-tidal Po(2) = 45 +/- 7 Torr); ventilatory response was measured during separate free-breathing trials in the same subjects. Discomfort caused by "urge to breathe" was rated every 30 s on a visual analog scale. Both ventilatory and air hunger responses were modeled as delayed double exponentials corresponding to a simple linear first-order response but with a separate first-order adaptation. These models provided adequate fits to both ventilatory and air hunger data (r(2) = 0.88 and 0.66). Mean time constant and time-to-peak response for the average perceptual response (0.36 min(-1) and 3.3 min, respectively) closely matched corresponding values for the average ventilatory response (0.39 min(-1) and 3.1 min). Air hunger response to sustained hypoxia tracked ventilatory drive with a delay of approximately 30 s. Our data provide further support for the corollary discharge hypothesis for air hunger.  相似文献   

6.
Ventilatory response to sustained hypoxia in normal adults   总被引:6,自引:0,他引:6  
We examined the ventilatory response to moderate (arterial O2 saturation 80%), sustained, isocapnic hypoxia in 20 young adults. During 25 min of hypoxia, inspiratory minute ventilation (VI) showed an initial brisk increase but then declined to a level intermediate between the initial increase and resting room air VI. The intermediate level of VI was a plateau that did not change significantly when hypoxia was extended up to 1 h. The relation between the amount of initial increase and subsequent decrease in ventilation during constant hypoxia was not random; the magnitude of the eventual decline correlated confidently with the degree of initial hyperventilation. Evaluation of breathing pattern revealed that during constant hypoxia there was little alteration in respiratory timing and that the changes in VI were related to significant alterations in tidal volume and mean inspiratory flow (VT/TI). None of the changes was reproduced during a sham control protocol, in which room air was substituted for the period of low fractional concentration of inspired O2. We conclude that ventilatory response to hypoxia in adults is not sustained; it exhibits some biphasic features similar to the neonatal hypoxic response.  相似文献   

7.
Carbon dioxide effects on the ventilatory response to sustained hypoxia   总被引:1,自引:0,他引:1  
We examined the interrelation between CO2 and the ventilatory response to moderate (80% arterial saturation) sustained hypoxia in normal young adults. On a background of continuous CO2-stimulated hyperventilation, hypoxia was introduced and sustained for 25 min. Initially, with the introduction of hypoxia onto hypercapnia, there was a brisk additional increase in inspiratory minute ventilation (VI) to 284% of resting VI, but the response was not sustained and hypoxic VI declined by 36% to a level intermediate between the initial increase and the preexisting hypercapnic hyperventilation. Through the continuous hypercapnia, the changes in hypoxic ventilation resulted from significant alterations in tidal volume (VT) and mean inspiratory flow (VT/TI) without changes in respiratory timing. In another experiment, sustained hypoxia was introduced on the usual background of room air, either with isocapnia or without maintenance of end-tidal CO2 (ETCO2) (poikilocapnic hypoxia). Regardless of the degree of maintenance of ETCO2, during 25 min of sustained hypoxia, VI showed an initial brisk increase and then declined by 35-40% of resting VI to a level intermediate between the initial response and resting room air VI. For both isocapnia and poikilocapnic conditions, the attenuation of VI was an expression of a diminished VT. Thus the decline in ventilation with sustained hypoxia occurred regardless of the background ETCO2, suggesting that the mechanism underlying the hypoxic decline is independent of CO2.  相似文献   

8.
To test the hypothesis that dopamine accumulated in the carotid body limits hyperventilation during acclimatization to sustained hypoxia, we administered the dopamine antagonist droperidol to mice undergoing acclimatization to an inspired O2 fraction (FIo2) of 0.1. Twelve mice were exposed to hypoxia for 10 days and ventilation in 10% O2 and in 7% CO2 in air were measured daily by a plethysmographic method. Under both conditions ventilation increased during acclimatization to hypoxia: ventilation in 10% O2 increased from 39.4 +/- 3.8 (mean +/- SE) ml/min before exposure to sustained hypoxia to 72.2 +/- 4.2 ml/min after 3 days of continuous hypoxia, and ventilation in 7% CO2 in air at the same time increased from 113.2 +/- 5.4 ml/min to 140.0 +/- 5.6 ml/min. Twelve mice were exposed to FIo2 of 0.1 for 10 days and received droperidol (300 micrograms/kg intraperitoneally) before exposure to sustained hypoxia and on the 2nd, 4th, and 8th days of continuous hypoxia. Before exposure to sustained hypoxia, droperidol increased ventilation in 10% O2 from 40.1 +/- 2.5 ml/min to 72.5 +/- 5.2 ml/min, but after 2, 4, and 8 days of continuous hypoxia droperidol caused an acute fall in ventilation (ventilation in 10% O2 after droperidol on day 2: 49.1 +/- 3.1 ml/min, on day 4: 44.4 +/- 3.7 ml/min, and on day 8: 27.8 +/- 3.4 ml/min). Two days after the animals were returned to room air, ventilation in 10% O2 again increased in response to droperidol. We conclude that dopamine in the carotid body does not limit ventilatory responses to hypoxia during acclimatization to sustained hypoxia.  相似文献   

9.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

10.
Increasing arterial blood pressure (AP) decreases ventilation, whereas decreasing AP increases ventilation in experimental animals. To determine whether a "ventilatory baroreflex" exists in humans, we studied 12 healthy subjects aged 18-26 yr. Subjects underwent baroreflex unloading and reloading using intravenous bolus sodium nitroprusside (SNP) followed by phenylephrine ("Oxford maneuver") during the following "gas conditions:" room air, hypoxia (10% oxygen)-eucapnia, and 30% oxygen-hypercapnia to 55-60 Torr. Mean AP (MAP), heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), expiratory minute ventilation (V(E)), respiratory rate (RR), and tidal volume were measured. After achieving a stable baseline for gas conditions, we performed the Oxford maneuver. V(E) increased from 8.8 ± 1.3 l/min in room air to 14.6 ± 0.8 l/min during hypoxia and to 20.1 ± 2.4 l/min during hypercapnia, primarily by increasing tidal volume. V(E) doubled during SNP. CO increased from 4.9 ± .3 l/min in room air to 6.1 ± .6 l/min during hypoxia and 6.4 ± .4 l/min during hypercapnia with decreased TPR. HR increased for hypoxia and hypercapnia. Sigmoidal ventilatory baroreflex curves of V(E) versus MAP were prepared for each subject and each gas condition. Averaged curves for a given gas condition were obtained by averaging fits over all subjects. There were no significant differences in the average fitted slopes for different gas conditions, although the operating point varied with gas conditions. We conclude that rapid baroreflex unloading during the Oxford maneuver is a potent ventilatory stimulus in healthy volunteers. Tidal volume is primarily increased. Ventilatory baroreflex sensitivity is unaffected by chemoreflex activation, although the operating point is shifted with hypoxia and hypercapnia.  相似文献   

11.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

12.
We hypothesized that the acute ventilatory response to hypoxia is enhanced after exposure to episodic hypoxia in awake humans. Eleven subjects completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (Pet(CO(2))) below 25 Torr. Subjects then breathed from a bag containing normocapnic (42 Torr), low (50 Torr), or high oxygen (140 Torr) gas mixtures. During the trials, Pet(CO(2)) increased while a constant oxygen level was maintained. The point at which ventilation began to rise in a linear fashion as Pet(CO(2)) increased was considered to be the ventilatory recruitment threshold. The ventilatory response below and above the recruitment threshold was determined. Ventilation did not persist above baseline values immediately after exposure to episodic hypoxia; however, Pet(CO(2)) levels were reduced compared with baseline. In contrast, compared with baseline, the ventilatory response to progressive increases in carbon dioxide during rebreathing trials in the presence of low but not high oxygen levels was increased after exposure to episodic hypoxia. This increase occurred when carbon dioxide levels were above but not below the ventilatory recruitment threshold. We conclude that long-term facilitation of ventilation (i.e., increases in ventilation that persist when normoxia is restored after episodic hypoxia) is not expressed in awake humans in the presence of hypocapnia. Nevertheless, despite this lack of expression, the acute ventilatory response to hypoxia in the presence of hypercapnia is increased after exposure to episodic hypoxia.  相似文献   

13.
Effect of brain blood flow on hypoxic ventilatory response in humans   总被引:1,自引:0,他引:1  
To assess the effect of brain blood flow on hypoxic ventilatory response, we measured arterial and internal jugular venous blood gases and ventilation simultaneously and repeatedly in eight healthy male humans in two settings: 1) progressive and subsequent sustained hypoxia, and 2) stepwise and progressive hypercapnia. Ventilatory response to progressive isocapnic hypoxia [arterial O2 partial pressure 155.9 +/- 4.0 (SE) to 46.7 +/- 1.5 Torr] was expressed as change in minute ventilation per change in arterial O2 saturation and varied from -0.16 to -1.88 [0.67 +/- 0.19 (SE)] l/min per % among subjects. In the meanwhile, jugular venous PCO2 (PjCO2) decreased significantly from 51.0 +/- 1.1 to 47.3 +/- 1.0 Torr (P less than 0.01), probably due to the increase in brain blood flow, and stayed at the same level during 15 min of sustained hypoxia. Based on the assumption that PjCO2 reflects the brain tissue PCO2, we evaluated the depressant effect of fall in PjCO2 on hypoxic ventilatory response, using a slope for ventilation-PjCO2 line which was determined in the second set of experiments. Hypoxic ventilatory response corrected with this factor was -1.31 +/- 0.33 l/min per %, indicating that this factor modulated hypoxic ventilatory response in humans. The ventilatory response to progressive isocapnic hypoxia did not correlate with this factor but significantly correlated with the withdrawal test (modified transient O2 test), which was performed on a separate day. Accordingly we conclude that an increase in brain blood flow during exposure to moderate hypoxia may substantially attenuate the ventilatory response but that it is unlikely to be the major factor of the interindividual variation of progressive isocapnic hypoxic ventilatory response in humans.  相似文献   

14.
Long-term facilitation (LTF) is a prolonged increase in ventilatory motor output after episodic peripheral chemoreceptor stimulation. We have previously shown that LTF is activated during sleep following repetitive hypoxia in snorers (Babcock MA and Badr MS. Sleep 21: 709-716, 1998). The purpose of this study was 1) to ascertain the relative contribution of inspiratory flow limitation to the development of LTF and 2) to determine the effect of eliminating inspiratory flow limitation by nasal CPAP on LTF. We studied 25 normal subjects during stable non-rapid eye movement sleep. We induced 10 episodes of brief repetitive isocapnic hypoxia (inspired O(2) fraction = 8%; 3 min) followed by 5 min of room air. Measurements were obtained during control and at 20 min of recovery (R(20)). During the episodic hypoxia study, inspiratory minute ventilation (Vi) increased from 6.7 +/- 1.9 l/min during the control period to 8.2 +/- 2.7 l/min at R(20) (122% of control; P < 0.05). Linear regression analysis confirmed that inspiratory flow limitation during control was the only independent determinant of the presence of LTF (P = 0.005). Six subjects were restudied by using nasal continuous positive airway pressure to ascertain the effect of eliminating inspiratory flow limitation on LTF. Vi during the recovery period was 97 +/- 10% (P > 0.05). In conclusion, 1) repetitive hypoxia in sleeping humans is followed by increased Vi in the recovery period, indicative of development of LTF; 2) inspiratory flow limitation is the only independent determinant of posthypoxic LTF in sleeping human; 3) elimination of inspiratory flow limitation abolished the ventilatory manifestations of LTF; and 4) we propose that increased Vi in the recovery period was a result of preferential recruitment of upper airway dilators by repetitive hypoxia.  相似文献   

15.
We wished to determine the severity of posthypoxic ventilatory decline in patients with sleep apnea relative to normal subjects during sleep. We studied 11 men with sleep apnea/hypopnea syndrome and 11 normal men during non-rapid eye movement sleep. We measured EEG, electrooculogram, arterial O(2) saturation, and end-tidal P(CO2). To maintain upper airway patency in patients with sleep apnea, nasal continuous positive pressure was applied at a level sufficient to eliminate apneas and hypopneas. We compared the prehypoxic control (C) with posthypoxic recovery breaths. Nadir minute ventilation in normal subjects was 6.3 +/- 0.5 l/min (83.8 +/- 5.7% of room air control) vs. 6.7 +/- 0.9 l/min, 69.1 +/- 8.5% of room air control in obstructive sleep apnea (OSA) patients; nadir minute ventilation (% of control) was lower in patients with OSA relative to normal subjects (P < 0.05). Nadir tidal volume was 0.55 +/- 0.05 liter (80.0 +/- 6.6% of room air control) in OSA patients vs. 0.42 +/- 0.03 liter, 86.5 +/- 5.2% of room air control in normal subjects. In addition, prolongation of expiratory time (Te) occurred in the recovery period. There was a significant difference in Te prolongation between normal subjects (2.61 +/- 0.3 s, 120 +/- 11.2% of C) and OSA patients (5.6 +/- 1.5 s, 292 +/- 127.6% of C) (P < 0.006). In conclusion, 1) posthypoxic ventilatory decline occurred after termination of hypocapnic hypoxia in normal subjects and patients with sleep apnea and manifested as decreased tidal volume and prolongation of Te; and 2) posthypoxic ventilatory prolongation of Te was more pronounced in patients with sleep apnea relative to normal subjects.  相似文献   

16.
The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.  相似文献   

17.
We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 +/- 0.82 vs. women, 4.70 +/- 0.77 l x min(-1) x Torr(-1); 150 Torr: men, 4.33 +/- 1.15 vs. women, 3.21 +/- 0.58 l x min(-1) x Torr(-1)). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 +/- 1.40 vs. women, 5.97 +/- 0.71 l x min(-1) x Torr(-1); 150 Torr: men, 5.73 +/- 0.81 vs. women, 3.83 +/- 0.56 l x min(-1) x Torr(-1)). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.  相似文献   

18.
During sustained hypoxia the decline in ventilation that occurs in normal adult humans may be related to central accumulation of a neurochemical with net inhibitory effect. Recent investigations have shown that the putative neurotransmitter adenosine can effect a prolonged respiratory inhibition. Therefore we evaluated the possible role of adenosine in the hypoxia ventilatory decline by employing aminophylline as an adenosine blocker. We evaluated the ventilatory response to 25 min of sustained hypoxia (80% arterial O2 saturation), in eight young adults after pretreatment with either intravenous saline or aminophylline. With a mean serum aminophylline level of 15.7 mg/l, over 25 min of sustained hypoxia, peak hypoxic ventilation decreased by only 12.8% compared with 24.8% with saline, a significant difference. However, the ventilatory decline during sustained hypoxia was not abolished by the aminophylline pretreatment. Unlike the usual tidal volume-dependent attenuation of hypoxic ventilation exhibited after saline, after aminophylline the ventilatory decline was achieved predominantly through alterations in respiratory timing. Thus aminophylline pretreatment did alleviate the hypoxic ventilatory decline, although the associated alterations in breathing pattern were uncharacteristic. We conclude that adenosine may play a contributing role in the hypoxic ventilatory decline.  相似文献   

19.
Hemodynamics, muscle sympathetic nerve activity (MSNA), and forearm blood flow were evaluated in 12 normal subjects before, during (1 and 7 h), and after ventilatory acclimatization to hypoxia achieved with 8 h of continuous poikilocapnic hypoxia. All results are means +/- SD. Subjects experienced mean oxygen saturation of 84.3 +/- 2.3% during exposure. The exposure resulted in hypoxic acclimatization as suggested by end-tidal CO(2) [44.7 +/- 2.7 (pre) vs. 39.5 +/- 2.2 mmHg (post), P < 0.001] and by ventilatory response to hypoxia [1.2 +/- 0.8 (pre) vs. 2.3 +/- 1.3 l x min(-1).1% fall in saturation(-1) (post), P < 0.05]. Subjects exhibited a significant increase in heart rate across the exposure that remained elevated even upon return to room air breathing compared with preexposure (67.3 +/- 15.9 vs. 59.8 +/- 12.1 beats/min, P < 0.008). Although arterial pressure exhibited a trend toward an increase across the exposure, this did not reach significance. MSNA initially increased from room air to poikilocapnic hypoxia (26.2 +/- 10.3 to 32.0 +/- 10.3 bursts/100 beats, not significant at 1 h of exposure); however, MSNA then decreased below the normoxic baseline despite continued poikilocapnic hypoxia (20.9 +/- 8.0 bursts/100 beats, 7 h Hx vs. 1 h Hx; P < 0.008 at 7 h). MSNA decreased further after subjects returned to room air (16.6 +/- 6.0 bursts/100 beats; P < 0.008 compared with baseline). Forearm conductance increased after exposure from 2.9 +/- 1.5 to 4.3 +/- 1.6 conductance units (P < 0.01). These findings indicate alterations of cardiovascular and respiratory control following 8 h of sustained hypoxia producing not only acclimatization but sympathoinhibition.  相似文献   

20.
Peripheral chemoreflex function was studied in high-altitude (HA) natives at HA, in patients with chronic mountain sickness (CMS) at HA, and in sea-level (SL) natives at SL. Results were as follows. 1) Acute ventilatory responses to hypoxia (AHVR) in the HA and CMS groups were approximately one-third of those of the SL group. 2) In CMS patients, some indexes of AHVR were modestly, but significantly, lower than in healthy HA natives. 3) Prior oxygenation increased AHVR in all subject groups. 4) Neither low-dose dopamine nor somatostatin suppressed any component of ventilation that could not be suppressed by acute hyperoxia. 5) In all subject groups, the ventilatory response to hyperoxia was biphasic. Initially, ventilation fell but subsequently rose so that, by 20 min, ventilation was higher in hyperoxia than hypoxia for both HA and CMS subjects. 6) Peripheral chemoreflex stimulation of ventilation was modestly greater in HA and CMS subjects at an end-tidal Po(2) = 52.5 Torr than in SL natives at an end-tidal Po(2) = 100 Torr. 7) For the HA and CMS subjects combined, there was a strong correlation between end-tidal Pco(2) and hematocrit, which persisted after controlling for AHVR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号