首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Control of DNA replication initiation is essential for normal cell growth. A unifying characteristic of DNA replication initiator proteins across the kingdoms of life is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains, that in vitro stretches DNA to promote replication origin opening. The Bacillus subtilis protein Soj/ParA has previously been shown to regulate DnaA-dependent DNA replication initiation; however, the mechanism underlying this control was unknown. Here, we report that Soj directly interacts with the AAA+ domain of DnaA and specifically regulates DnaA helix assembly. We also provide critical biochemical evidence indicating that DnaA assembles into a helical oligomer in vivo and that the frequency of replication initiation correlates with the extent of DnaA oligomer formation. This work defines a significant new regulatory mechanism for the control of DNA replication initiation in bacteria.  相似文献   

2.
Hyperphosphorylation of the Drosophila melanogaster origin recognition complex (DmORC) by cyclin dependent kinases (CDKs) allows nucleotide binding but inhibits the ATPase activity of Orc1, and ablates the ATP-dependent interaction of ORC with DNA. Here we present single particle electron microscopy (EM) studies of ORC bound to nucleotide in both the dephosphorylated and hyper-phosphorylated states. 3D image reconstructions show that nucleotide binding gives rise to an analogous conformation independent of phosphorylation state. At the intermediate resolution achieved in our studies, ATP promotes changes along the toroidal core of the complex with negligible differences contributed by phosphorylation. Thus, hyperphosphorylation of DmORC does not induce meso-scale rearrangement of the ORC structure. To better understand ORC's role in origin remodeling, we performed atomic force microscopy (AFM) studies that show the contour length of a 688bp linear DNA fragment shortens by the equivalent of approximately 130bp upon ORC binding. This data, coupled with previous studies that showed a linking number change in circular DNA upon ORC binding, suggests that ORC may wrap the DNA in a manner akin to DnaA. Based on existing data and our structures, we propose a subunit arrangement for the AAA+ and winged helix domains, and in addition, speculate on a path of the 133bp of DNA around the ORC complex.  相似文献   

3.
The initiation of DNA replication is a key event in the cell cycle of all organisms. In bacteria, replication initiation occurs at specific origin sequences that are recognized and processed by an oligomeric complex of the initiator protein DnaA. We have determined the structure of the conserved core of the Aquifex aeolicus DnaA protein to 2.7 A resolution. The protein comprises an AAA+ nucleotide-binding fold linked through a long, helical connector to an all-helical DNA-binding domain. The structure serves as a template for understanding the physical consequences of a variety of DnaA mutations, and conserved motifs in the protein suggest how two critical aspects of origin processing, DNA binding and homo-oligomerization, are mediated. The spatial arrangement of these motifs in DnaA is similar to that of the eukaryotic-like archaeal replication initiation factor Cdc6/Orc1, demonstrating that mechanistic elements of origin processing may be conserved across bacterial, archaeal and eukaryotic domains of life.  相似文献   

4.
Control of DNA replication initiation is essential for cell growth. A unifying characteristic of DNA replication initiator proteins is their distinctive AAA+ nucleotide‐binding domains. The bacterial initiator DnaA assembles into a right‐handed helical oligomer built upon interactions between neighbouring AAA+ domains to form an active initiation complex. Recently we developed a unique cross‐linking assay that specifically detects ATP‐dependent DnaA helix assembly. Here we have utilized this assay to show that two DnaA regulatory proteins in Bacillus subtilis, YabA and DnaD, inhibit DnaA helix formation. These results, in combination with our previous finding that the regulatory factor Soj/ParA also targets DnaA filament formation, highlight the critical importance of regulating DnaA helix formation during the initiation reaction. Moreover, these observations lead us to suggest that DnaA oligomerization may be the main regulatory step of the initiator assembly pathway in B. subtilis, in contrast to the prevailing model of bacterial DNA replication based on Escherichia coli DnaA where ATP binding appears to be the targeted activity.  相似文献   

5.
《Journal of molecular biology》2009,385(2):368-29346
Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 Å resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel β-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.  相似文献   

6.
In bacteria, the initiation of replication is controlled by DnaA, a member of the ATPases associated with various cellular activities (AAA+) protein superfamily. ATP binding allows DnaA to transition from a monomeric state into a large oligomeric complex that remodels replication origins, triggers duplex melting and facilitates replisome assembly. The crystal structure of AMP-PCP-bound DnaA reveals a right-handed superhelix defined by specific protein-ATP interactions. The observed quaternary structure of DnaA, along with topology footprint assays, indicates that a right-handed DNA wrap is formed around the initiation nucleoprotein complex. This model clarifies how DnaA engages and unwinds bacterial origins and suggests that additional, regulatory AAA+ proteins engage DnaA at filament ends. Eukaryotic and archaeal initiators also have the structural elements that promote open-helix formation, indicating that a spiral, open-ring AAA+ assembly forms the core element of initiators in all domains of life.  相似文献   

7.
The origin recognition complex (ORC), a possible initiator of chromosomal DNA replication in eukaryotes, binds to ATP through its subunits Orc1p and Orc5p. Orc1p possesses ATPase activity. As for DnaA, the Escherichia coli initiator, the ATP-DnaA complex is active but the ADP-DnaA complex is inactive for DNA replication and, therefore, the ATPase activity of DnaA inactivates the ATP-DnaA complex to suppress the re-initiation of chromosomal DNA replication. We investigated ADP-binding to ORC by a filter-binding assay. The K(d) values for ADP-binding to wild-type ORC and to ORC-1A (ORC containing Orc1p with a defective Walker A motif) were less than 10nM, showing that Orc5p can bind to ADP with a high affinity, similar to ATP. ORC-5A (ORC containing Orc5p with a defective Walker A motif) did not bind to ADP, suggesting that the ADP-Orc1p complex is too unstable to be detected by the filter-binding assay. ADP dissociated more rapidly than ATP from wild-type ORC and ORC-1A. Origin DNA fragments did not stimulate ADP-binding to any type of ORC. In the presence of ADP, ORC could not bind to origin DNA in a sequence-specific manner. Thus, in eukaryotes, the ADP-ORC complex may be unable to initiate chromosomal DNA replication, and in this it resembles the ADP-DnaA complex in prokaryotes. However, overall control may be different. In eukaryotes, the ADP-ORC complex is unstable, suggesting that the ADP-ORC complex might rapidly become an ATP-ORC complex; whereas in prokaryotes, ADP remains bound to DnaA, keeping DnaA inactive, and preventing re-initiation for some periods.  相似文献   

8.
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.  相似文献   

9.
In most bacteria, the timing and synchrony of initiation of chromosomal replication are determined by the binding of the AAA(+) protein DnaA to a set of high- and low-affinity sites found within the origin of chromosomal replication (oriC). Despite the large amount of information on the role and regulation of DnaA, the actual structure of the DnaA-oriC complex and the mechanism by which it primes the origin for the initiation of replication remain unclear. In this study, we have performed magnetic tweezers experiments to investigate the structural properties of the DnaA-oriC complex. We show that the DnaA-ATP-oriC complex adopts a right-handed helical conformation involving a variable amount of DNA and protein whose features fit qualitatively as well as quantitatively with an existing model based on the crystal structure of a truncated DnaA tetramer obtained in the absence of DNA. We also investigate the topological effect of oriC's DNA unwinding element.  相似文献   

10.
Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.  相似文献   

11.
DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~ 15 Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication.  相似文献   

12.
Origin recognition complex (ORC) proteins were first discovered as a six-subunit assemblage in budding yeast that promotes the initiation of DNA replication. Orc1-5 appear to be present in all eukaryotes, and include both AAA+ and winged-helix motifs. A sixth protein, Orc6, shows no structural similarity to the other ORC proteins, and is poorly conserved between budding yeast and most other eukaryotic species. The replication factor Cdc6 has extensive sequence similarity with Orc1 and phylogenetic analysis suggests the genes that encode them may be paralogs. ORC proteins have also been found in the archaea, and the bacterial DnaA replication protein has ORC-like functional domains. In budding yeast, Orc1-6 are bound to origins of DNA replication throughout the cell cycle. Following association with Cdc6 in G1 phase, the sequential hydrolysis of Cdc6 - then ORC-bound ATP loads the Mcm2-7 helicase complex onto DNA. Localization of ORC subunits to the kinetochore and centrosome during mitosis and to the cleavage furrow during cytokinesis has been observed in metazoan cells and, along with phenotypes observed following knockdown with short interfering RNAs, point to additional roles at these cell-cycle stages. In addition, ORC proteins function in epigenetic gene silencing through interactions with heterochromatin factors such as Sir1 in budding yeast and HP1 in higher eukaryotes. Current avenues of research have identified roles for ORC proteins in the development of neuronal and muscle tissue, and are probing their relationship to genome integrity.  相似文献   

13.
ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA   总被引:8,自引:0,他引:8  
Binding of Cdc6 to the origin recognition complex (ORC) is a key step in the assembly of a pre-replication complex (pre-RC) at origins of DNA replication. ORC recognizes specific origin DNA sequences in an ATP-dependent manner. Here we demonstrate cooperative binding of Saccharomyces cerevisiae Cdc6 to ORC on DNA in an ATP-dependent manner, which induces a change in the pattern of origin binding that requires the Orc1 ATPase. The reaction is blocked by specific origin mutations that do not interfere with the interaction between ORC and DNA. Single-particle reconstruction of electron microscopic images shows that the ORC-Cdc6 complex forms a ring-shaped structure with dimensions similar to those of the ring-shaped MCM helicase. The ORC-Cdc6 structure is predicted to contain six AAA+ subunits, analogous to other ATP-dependent protein machines. We suggest that Cdc6 and origin DNA activate a molecular switch in ORC that contributes to pre-RC assembly.  相似文献   

14.
RuvBL1 and RuvBL2, also known as Pontin and Reptin, are AAA+ proteins essential in small nucleolar ribonucloprotein biogenesis, chromatin remodelling, nonsense-mediated messenger RNA decay and telomerase assembly, among other functions. They are homologous to prokaryotic RuvB, forming single- and double-hexameric rings; however, a DNA binding domain II (DII) is inserted within the AAA+ core. Despite their biological significance, questions remain regarding their structure. Here, we report cryo-electron microscopy structures of human double-ring RuvBL1–RuvBL2 complexes at ∼15 Å resolution. Significantly, we resolve two coexisting conformations, compact and stretched, by image classification techniques. Movements in DII domains drive these conformational transitions, extending the complex and regulating the exposure of DNA binding regions. DII domains connect with the AAA+ core and bind nucleic acids, suggesting that these conformational changes could impact the regulation of RuvBL1–RuvBL2 containing complexes. These findings resolve some of the controversies in the structure of RuvBL1–RuvBL2 by revealing a mechanism that extends the complex by adjustments in DII.  相似文献   

15.
DNA replication, as with all macromolecular synthesis steps, is controlled in part at the level of initiation. Although the origin recognition complex (ORC) binds to origins of DNA replication, it does not solely determine their location. To initiate DNA replication ORC requires Cdc6 to target initiation to specific DNA sequences in chromosomes and with Cdt1 loads the ring-shaped mini-chromosome maintenance (MCM) 2-7 DNA helicase component onto DNA. ORC and Cdc6 combine to form a ring-shaped complex that contains six AAA+ subunits. ORC and Cdc6 ATPase mutants are defective in MCM loading, and ORC ATPase mutants have reduced activity in ORC x Cdc6 x DNA complex formation. Here we analyzed the role of the Cdc6 ATPase on ORC x Cdc6 complex stability in the presence or absence of specific DNA sequences. Cdc6 ATPase is activated by ORC, regulates ORC x Cdc6 complex stability, and is suppressed by origin DNA. Mutations in the conserved origin A element, and to a lesser extent mutations in the B1 and B2 elements, induce Cdc6 ATPase activity and prevent stable ORC x Cdc6 formation. By analyzing ORC x Cdc6 complex stability on various DNAs, we demonstrated that specific DNA sequences control the rate of Cdc6 ATPase, which in turn controls the rate of Cdc6 dissociation from the ORC x Cdc6 x DNA complex. We propose a mechanism explaining how Cdc6 ATPase activity promotes origin DNA sequence specificity; on DNA that lacks origin activity, Cdc6 ATPase promotes dissociation of Cdc6, whereas origin DNA down-regulates Cdc6 ATPase resulting in a stable ORC x Cdc6 x DNA complex, which can then promote MCM loading. This model has relevance for origin specificity in higher eukaryotes.  相似文献   

16.
17.
Escherichia coli DnaA protein initiates DNA replication from the chromosomal origin, oriC, and regulates the frequency of this process. Structure-function studies indicate that the replication initiator comprises four domains. Based on the structural similarity of Aquifex aeolicus DnaA to other AAA+ proteins that are oligomeric, it was proposed that Domain III functions in oligomerization at oriC (Erzberger, J. P., Pirruccello, M. M., and Berger, J. M. (2002) EMBO J. 21, 4763-4773). Because the Box VII motif within Domain III is conserved among DnaA homologues and may function in oligomerization, we substituted conserved Box VII amino acids of E. coli DnaA with alanine by site-directed mutagenesis to examine the role of this motif. All mutant proteins are inactive in initiation from oriC in vivo and in vitro, but they support RK2 plasmid DNA replication in vivo. Thus, RK2 requires only a subset of DnaA functions for plasmid DNA replication. Biochemical studies on a mutant DnaA carrying an alanine substitution at arginine 281 (R281A) in Box VII show that it is inactive in in vitro replication of an oriC plasmid, but this defect is not from the failure to bind to ATP, DnaB in the DnaB-DnaC complex, or oriC. Because the mutant DnaA is also active in the strand opening of oriC, whereas DnaB fails to bind to this unwound region, the open structure is insufficient by itself to load DnaB helicase. Our results show that the mutant fails to form a stable oligomeric DnaA-oriC complex, which is required for the loading of DnaB.  相似文献   

18.
In eukaryotes, the origin recognition complex (ORC) is essential for the initiation of DNA replication. The largest subunit of this complex (ORC1) has a regulatory role in origin activation. Here we report the cloning and functional characterization of Plasmodium falciparum ORC1 homolog. Using immunofluorescence and immunoelectron microscopy, we show here that PfORC1 is expressed in the nucleus during the late trophozoite and schizont stages where maximum amount of DNA replication takes place. Homology modelling of the carboxy terminal region of PfORC1 (781-1033) using Saccharomyces pombe Cdc6/Cdc18 homolog as a template reveals the presence of a similar AAA+ type nucleotide-binding fold. This region shows ATPase activity in vitro that is important for the origin activity. To our knowledge, this is the first evidence of an individual ORC subunit that shows ATPase activity. These observations strongly suggest that PfORC1 might be involved in DNA replication initiation during the blood stage of the parasitic life cycle.  相似文献   

19.
Origin Recognition Complex (ORC) is a candidate initiator of chromosomal DNA replication in eukaryotes. We recently reported that cardiolipin inhibits the interaction of Origin Recognition Complex ORC with origin DNA, as is the case of DnaA, the initiator of chromosomal DNA replication in prokaryotes. We report here that another acidic phospholipid, phosphatidylglycerol (PG), also inhibits the interaction. Synthetic PG with only unsaturated fatty acids inhibits ORC-binding to origin DNA more strongly than PG with only saturated fatty acids. On the other hand, phosphatidylcholine (neutral phospholipid) does not affect the ORC-origin interaction, regardless of the presence of saturated or unsaturated fatty acids. These results suggest that an acidic moiety and unsaturated fatty acids are important factors for the inhibitory effect of phospholipids on ORC binding to origin DNA, as is the case for DnaA. The inhibitory effect of cardiolipin on ORC binding to origin DNA was more apparent at 30 degrees C than at 4 degrees C. Furthermore, chlorpromazine restored the ORC-origin interaction in the presence of cardiolipin. Since the presence of unsaturated fatty acids, low incubation temperatures, and the addition of chlorpromazine all decrease membrane fluidity, these results suggest that membrane fluidity is important for the inhibitory effect of acidic phospholipids on ORC-binding to origin DNA, as is the case for DnaA.  相似文献   

20.
Shogo Ozaki  Tsutomu Katayama   《Plasmid》2009,62(2):71-82
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号