首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E Usui  M Noshiro  Y Ohyama  K Okuda 《FEBS letters》1990,274(1-2):175-177
The cDNA for vitamin D 25-hydroxylase in rat liver mitochondria was transfected in COS cells in order to confirm our previous postulation that both 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol 27-hydroxylation and vitamin D 25-hydroxylation are catalyzed by a common enzyme. As a result it was found that both enzyme activities could be reconstituted from the solubilized extract of mitochondria of these cells, NADPH, NADPH-adrenodoxin reductase and adrenodoxin, giving unequivocal evidence that the two enzyme activities are catalyzed by a common enzyme.  相似文献   

2.
During purification of CYP27A from rabbit liver mitochondria, a cytochrome P450 of different molecular size was co-isolated. The latter enzyme has an apparent M(r) 51,000 which is slightly lower than that of CYP27A. The 51,000-M(r) protein was found to be present in mitochondria from liver, small intestine, kidney, and spleen but not in lung, testis, heart, or brain mitochondria. Determination of the N-terminal sequence revealed that the 51,000-M(r) protein is a truncated form of CYP27A lacking the first 12 residues. The truncated enzyme was less efficient than the full-length CYP27A in the 27-hydroxylation of C(27)-sterols and much less efficient in the 25-hydroxylation of 1alpha-hydroxyvitamin D(3). The K(m) values for cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol were about the same with both enzymes whereas the K(m) for 1alpha-hydroxyvitamin D(3) was much higher with the truncated CYP27A. The results strongly indicate that the 51,000-M(r) protein is formed via proteolytic processing of CYP27A by endogenous protease(s) in some of the tissues examined. The truncation at the N terminus markedly impairs the ability of CYP27A to use 1alpha-hydroxyvitamin D(3) as substrate and to catalyze 25-hydroxylation in the bioactivation of vitamin D(3).  相似文献   

3.
The effect of sex hormones on hydroxylation of cholecalciferol ('vitamin D3') and of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol has been investigated in female- and male-rat livers. The mitochondrial cholecalciferol 25-hydroxylase and C27-steroid 27-hydroxylase activities were respectively 4.6- and 2.7-fold higher in female- than in male-rat livers. The microsomal 1 alpha-hydroxycholecalciferol 25-hydroxylase was 2.8-fold higher in male- than in female-rat liver. No significant difference was found in the microsomal 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. Liver microsomes (microsomal fractions) from male, but not from female, rats also catalysed 1-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. Injection of testosterone into female rats decreased the mitochondrial cholecalciferol 25-hydroxylase and C27-steroid 27-hydroxylase activities, but not to a statistically significant extent. Testosterone treatment had no effect on the microsomal hydroxylases in female-rat liver. Injection of oestradiol valerate to male rats resulted in increased activities of both mitochondrial hydroxylases to the same levels as those of control females, while the microsomal enzyme activities decreased. The present results indicate that sex hormones exert a regulatory control on the mitochondrial cholecalciferol 25-hydroxylase and C27-steroid 27-hydroxylase activities.  相似文献   

4.
A constitutive cytochrome P-450 catalyzing 25-hydroxylation of C27-steroids and vitamin D3 was purified from rat liver microsomes. The enzyme fraction contained 16 nmol of cytochrome P-450/mg of protein and showed only one protein band with a minimum molecular weight of 51,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified cytochrome P-450 catalyzed 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha-diol, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and 1 alpha-hydroxyvitamin D3 up to 50 times more efficiently, and 25-hydroxylation of vitamin D3 about 150 times more efficiently than the microsomes. The cytochrome P-450 showed no detectable 25-hydroxylase activity towards vitamin D2 and was inactive in cholesterol 7 alpha-hydroxylation as well as in 12 alpha- and 26-hydroxylations of C27-steroids. It catalyzed hydroxylations of testosterone and demethylation of ethylmorphine at the same rates as, or lower rates than, microsomes. The 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol and vitamin D3 with the purified cytochrome P-450 was not stimulated by addition of phospholipid or cytochrome b5 to the reconstituted system. Emulgen inhibited 25-hydroxylase activity towards both substrates. The possibility that 25-hydroxylation of C27-steroids and vitamin D3 is catalyzed by the same species of cytochrome P-450 is discussed.  相似文献   

5.
In classic cholic acid biosynthesis, a series of ring modifications of cholesterol precede side chain cleavage and yield 5beta-cholestane-3alpha, 7alpha, 12alpha-triol. Side chain reactions of the triol then proceed either by the mitochondrial 27-hydroxylation pathway or by the microsomal 25-hydroxylation pathway. We have developed specific and precise assay methods to measure the activities of key enzymes in both pathways, 5beta-cholestane-3alpha, 7alpha, 12alpha-triol 25- and 27-hydroxylases and 5beta-cholestane-3alpha, 7alpha, 12alpha, 25-tetrol 23R-, 24R-, 24S- and 27-hydroxylases. The extracts from either the mitochondrial or microsomal incubation mixtures were purified by means of a disposable silica cartridge column, derivatized into trimethylsilyl ethers, and quantified by gas chromatography;-mass spectrometry with selected-ion monitoring in a high resolution mode. Compared with the addition of substrates in acetone, those in 2-hydroxypropyl-beta-cyclodextrin increased mitochondrial triol 27-hydroxylase activity 132% but decreased activities of the enzymes in microsomal 25-hydroxylation pathway (triol 25-hydroxylase and 5beta-cholestane-3alpha, 7alpha, 12alpha, 25-tetrol 23R-, 24R-, 24S- and 27-hydroxylases) 13;-60% in human liver. The enzyme activities in both pathways were generally 2- to 4-times higher in mouse and rabbit livers compared with human liver. In all species, microsomal triol 25-hydroxylase activities were 4- to 11-times larger than mitochondrial triol 27-hydroxylase activities but the activities of tetrol 24S-hydroxylase were similar to triol 27-hydroxylase activities in our assay conditions. The regulation of both pathways in rabbit liver was studied after bile acid synthesis was perturbed. Cholesterol feeding up-regulated enzyme activities involved in both 25- (64;-142%) and 27- (77%) hydroxylation pathways, while bile drainage up-regulated only the enzymes in the 25-hydroxylation pathway (178;-371%). Using these new assays, we demonstrated that the 25- and 27-hydroxylation pathways for cholic acid biosynthesis are more active in mouse and rabbit than human livers and are separately regulated in rabbit liver.  相似文献   

6.
In a previous study we found that liver mitochondrial side-chain hydroxylation of vitamin D3 (cholecalciferol) and of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol was higher in female than in male rats [Saarem & Pedersen (1987) Biochem. J. 247, 73-78]. The present paper describes the effects of age, gonadectomy and hypophysectomy on these activities. The sex difference became manifest above the age of 7 weeks. Ovariectomy and/or injection of oestradiol valerate had no effect on the hydroxylase activities in adult females. Castration increased, and subsequent testosterone treatment decreased, the hydroxylase activities in adult males. Hypophysectomy had no effect in females, but increased the hydroxylase activities in males. Testosterone treatment had no effect in hypophysectomized females or males. Injection of oestradiol valerate had no effect on the hydroxylase activities in hypophysectomized females. In hypophysectomized males this treatment had no effect on the vitamin D3 25-hydroxylase activity, but decreased the C27-steroid 27-hydroxylase activity in males. Microsomal 1 alpha-hydroxyvitamin D3 25-hydroxylase activity was lower in females than in males in all age groups. Castration or hypophysectomy decreased the activity in male rats. It is concluded that, in adult female rats, the mitochondrial side-chain hydroxylation of vitamin D3 and of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol is independent of sex hormones. In males these activities are regulated by influence of sex hormones on the hypophysis, probably by the presence of androgens in the neonatal period. Different effects on the two hydroxylases indicate the presence of at least two different cytochromes P-450 in rat liver mitochondria.  相似文献   

7.
A cytochrome P-450 catalysing 25-hydroxylation of vitamin D3 was purified from liver mitochondria of untreated rabbits. The enzyme fraction contained 9 nmol of cytochrome P-450/mg of protein and showed only one protein band with an apparent Mr of 52,000 upon SDS/polyacrylamide-gel electrophoresis. The preparation showed a single protein spot with an apparent isoelectric point of 7.8 and an Mr of approx. 52,000 upon two-dimensional isoelectric-focusing-polyacrylamide-gel electrophoresis. The purified cytochrome P-450 catalysed 25-hydroxylation of vitamin D3 up to 5000 times more efficiently than did the mitochondria. The cytochrome P-450 required both ferredoxin and ferredoxin reductase for catalytic activity. Microsomal NADPH-cytochrome P-450 reductase could not replace ferredoxin and ferredoxin reductase. The cytochrome P-450 catalysed, in addition to 25-hydroxylation of vitamin D3, the 25-hydroxylation of 1 alpha-hydroxyvitamin D3 and the 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. The enzyme did not catalyse side-chain cleavage of cholesterol, 11 beta-hydroxylation of deoxycorticosterone, 1 alpha-hydroxylation of 25-hydroxyvitamin D3, hydroxylations of lauric acid and testosterone or demethylation of benzphetamine. The results raise the possibility that the 25-hydroxylation of vitamin D3 and the 26-hydroxylation of C27 steroids are catalysed by the same species of cytochrome P-450 in liver mitochondria. The possible role of the liver mitochondrial cytochrome P-450 in the metabolism of vitamin D3 is discussed.  相似文献   

8.
A cytochrome P-450 catalyzing 26-hydroxylation of C27-steroids was purified from liver mitochondria of untreated rabbits. The enzyme fraction contained 10 nmol of cytochrome P-450/mg of protein and showed only one protein band with a minimum Mr = 53,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified mitochondrial cytochrome P-450 showed apparent molecular weight similar to microsomal cytochromes P-450LM4 but differed in spectral and catalytic properties from these microsomal isozymes. The purified cytochrome P-450 catalyzed 26-hydroxylation of cholesterol, 5-cholestene-3 beta,7 alpha-diol, 7 alpha-hydroxy-4-cholesten-3-one, 5 beta-cholestane-3 alpha,7 alpha-diol, and 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol up to 1000 times more efficiently than the mitochondria. The cytochrome P-450 required both ferredoxin and ferredoxin reductase for catalytic activity. Microsomal NADPH-cytochrome P-450 reductase could not replace ferredoxin and ferredoxin reductase. The cytochrome P-450 was inactive in 7 alpha-, 12 alpha- and 25-hydroxylations of C27-steroids. The results suggest that mitochondrial 26-hydroxylation of various C27-steroids is catalyzed by the same species of cytochrome P-450.  相似文献   

9.
The accumulation of various 25-hydroxylated C(27)-bile alcohols in blood and their excretion in urine are characteristic features of cerebrotendinous xanthomatosis (CTX) a recessively inherited inborn error of bile acid synthesis caused by mutations in the mitochondrial sterol 27-hydroxylase (CYP27) gene. These bile alcohols may be intermediates in the alternative cholic acid side chain cleavage pathway. The present study was undertaken to identify enzymes and reactions responsible for the formation of these bile alcohols and to explain why Cyp27(-/-) mice do not show CTX-related abnormalities. Microsomal activities of 5beta-cholestane-3alpha,7alpha,12alpha-triol 25- and 26-hydroxylases, 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 23R-, 24S-, and 27-hydroxylases and testosterone 6beta-hydroxylase, a marker enzyme for CYP3A, in Cyp27(-/-) mice livers were markedly up-regulated (5.5-, 3.5-, 6.5-, 7.5-, 2.9-, and 5.4-fold, respectively). In contrast, these enzyme activities were not increased in CTX. The activities of 5beta-cholestane-3alpha,7alpha,12alpha-triol 25- and 26-hydroxylases and 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 23R-, 24R-, 24S-, and 27-hydroxylases were strongly correlated with the activities of testosterone 6beta-hydroxylase in control human liver microsomes from eight unrelated donors. Troleandomycin, a specific inhibitor of CYP3A, markedly suppressed these microsomal side chain hydroxylations in both mouse and human livers in a dose-dependent manner. In addition, experiments using recombinant overexpressed human CYP3A4 confirmed that these microsomal side chain hydroxylations were catalyzed by a single enzyme, CYP3A4. The results demonstrate that microsomal 25- and 26-hydroxylations of 5beta-cholestane-3alpha,7alpha,12alpha-triol and microsomal 23R-, 24R-, 24S-, and 27-hydroxylations of 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol are mainly catalyzed by CYP3A in both mice and humans. Unlike Cyp27(-/-) mice, CYP3A activity was not up-regulated despite marked accumulation of 5beta-cholestane-3alpha,7alpha,12alpha-triol in CTX.  相似文献   

10.
5 beta-Cholestane-3 alpha,7 alpha,12 alpha-triol 27-hydroxylase (5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol, NADPH:oxygen oxidoreductase (26-hydroxylating), EC 1.14.13.15) was purified from female rat liver mitochondria based on its catalytic activity. The final preparation of the enzyme showed a single major band on the sodium dodecyl sulfate-polyacrylamide gel electrophoretogram. The content of purified enzyme was 12 nmol/mg of protein, and the specific activity was 431 nmol/min/mg of protein. The molecular weight of the enzyme was determined from sodium dodecyl sulfate-polyacrylamide gel electrophoresis as 52,500. The absorption spectra of the purified enzyme and that of the dithionite-reduced CO complex showed peaks at 417 and 450 nm, respectively, indicating the enzyme belongs to the cytochrome P-450 family. Upon reconstitution with the electron-transferring system of the adrenal (adrenodoxin and NADPH-adrenodoxin reductase), the enzyme showed high activity hydroxylating 5 beta-cholestane-3 alpha,7 alpha-12-triol at position 27 with a turnover number of 35.5 min-1 and Km of 6.3 microM. The enzyme activity was completely lost when the electron-transferring system was replaced by that of microsomes (NADPH-cytochrome P-450 reductase purified from rat liver microsomes), confirming that the P-450 enzyme was of the mitochondrial type, but not of the microsomal. The omission of cytochrome P-450, adrenodoxin, or NADPH-adrenodoxin reductase resulted in complete loss of enzyme activity. The specific activity toward 5 beta-cholestane-3 alpha, 7 alpha-diol was less than one-half that toward cholestanetriol and that toward cholesterol was about one-fiftieth. The enzyme showed no activity toward xenobiotics such as benzphetamine, 7-ethoxycoumarin, and benzo[a]pyrene. Its activity was not inhibited by metyrapone and slightly inhibited by aminoglutethimide. The enzyme activity was markedly lowered in an atmosphere of CO/O2/N2, 40/20/40.  相似文献   

11.
The cytochrome P-450 enzyme which catalyses 25-hydroxylation of vitamin D3 (cytochrome P-450(25] from pig kidney microsomes [Postlind & Wikvall (1988) Biochem. J. 253, 549-552] has been further purified. The specific content of cytochrome P-450 was 15.0 nmol.mg of protein-1, and the protein showed a single spot with an apparent isoelectric point of 7.4 and an Mr of 50,500 upon two-dimensional isoelectric-focusing/SDS/PAGE. The 25-hydroxylase activity towards vitamin D3 was 124 pmol.min-1.nmol of cytochrome P-450-1 and towards 1 alpha-hydroxyvitamin D3 it was 1375 pmol.min-1.nmol-1. The preparation also catalysed the 25-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha-diol at a rate of 1000 pmol.min-1.nmol of cytochrome P-450-1 and omega-1 hydroxylation of lauric acid at a rate of 200 pmol.min-1.nmol of cytochrome P-450-1. A monoclonal antibody raised against the 25-hydroxylating cytochrome P-450, designated mAb 25E5, was prepared. After coupling to Sepharose, the antibody was able to bind to cytochrome P-450(25) from kidney as well as from pig liver microsomes, and to immunoprecipitate the activity for 25-hydroxylation of vitamin D3 and 5 beta-cholestane-3 alpha,7 alpha-diol when assayed in a reconstituted system. The hydroxylase activity towards lauric acid was not inhibited by the antibody. By SDS/PAGE and immunoblotting with mAb 25E5, cytochrome P-450(25) was detected in both pig kidney and pig liver microsomes. These results indicate a similar or the same species of cytochrome P-450 in pig kidney and liver microsomes catalysing 25-hydroxylation of vitamin D3 and C27 steroids. The N-terminal amino acid sequence of the purified cytochrome P-450(25) from pig kidney microsomes differed from those of hitherto isolated mammalian cytochromes P-450.  相似文献   

12.
Pig kidney mitochondria were found to catalyze the formation of 26-hydroxycholesterol, an inhibitor of cholesterol biosynthesis. The cholesterol 26-hydroxylase was purified 600-fold. It was present in a mitochondrial enzyme fraction enriched in cytochrome P-450. The cytochrome P-450 fraction required NADPH, mitochondrial ferredoxin and ferredoxin reductase for 26-hydroxylase activity. The mitochondria and the purified 26-hydroxylase preparation also catalyzed 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and intermediate in cholic acid biosynthesis, and of 25-hydroxyvitamin D3. The role of extra-hepatic formation of 26-hydroxycholesterol is discussed.  相似文献   

13.
The mechanism and sequence of side chain hydroxylation of cholesterol in bile acid synthesis was studied in the isolated perfused rabbit liver. A comparison was made between the importance of 26- and 25-hydroxylation in cholic acid biosynthesis in the rabbit. The formation of [G-3H]cholic acid was observed when the liver was perfused with 5beta-[G-3H]cholestane-3alpha, 7alpha-diol, 5beta-[G-3H]cholestane-3alpha, 7alpha-12alpha-triol, and 5beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol. No [G-3H]chenodeoxycholic acid was detected in the bile. These findings indicate that potential precursors of chenodeoxycholic acid were hydroxylated at position 12alpha either subsequent to or before hydroxylation of the cholesterol side chain. In addition, no other intermediates (tetrahydroxy or pentahydroxy bile alcohols) were found in the bile when these compounds were perfused in the liver. Bile acid precursors were detected in bile when the rabbit liver was perfused with 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol. The 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol was hydroxylated in the liver at the 12alpha position to yield the corresponding 5beta-cholestane-3alpha, 7alpha, 12alpha, 25-tetrol. The tetrol was further metabolized to a series of pentols (5beta-cholestane-3alpha, 7alpha, 12alpha, 22, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 23, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 24, 25-pentol; and 5beta-cholestane-3alpha, 7alpha, 12alpha, 25, 26-pentol). The major bile acid obtained from the perfusion of the 5beta-cholestane-3alpha, 7alpha, 25-triol was cholic acid. The experiments indicated that in the rabbit liver 12alpha-hydroxylation can occur after hydroxylation of the cholesterol side chain at either C-25 (5 beta-cholestane-3alpha, 7alpha, 25-triol) or C-26 (5beta-cholestane-3alpha, 7alpha-26-triol). Apparently, the rabbit can form cholic acid via the classical 26-hydroxylation pathway as well as via 25-hydroxylated intermediates.  相似文献   

14.
Cytochrome P450 27A1 (P450 27A1 or CYP27A1) is an important enzyme that participates in different pathways of cholesterol degradation as well as in the activation of vitamin D(3). Several approaches were utilized to investigate how two physiological substrates, cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol, interact with CYP27A1. The enzyme active site was first probed spectrally by assessing binding of the two substrates and five substrate analogues followed by computer modeling and site-directed mutagenesis. The computer models suggest that the spatial positions and orientations of cholesterol and 5beta-cholestane-3alpha,7alpha,12alpha-triol are different in the enzyme active site. As a result, some of the active site residues interact with both substrates, although they are situated differently relative to each steroid, and some residues bind only one substrate. Mutation of the overlapping substrate-contact residues (W100, H103, T110, M301C, V367, I481, and V482) affected CYP27A1 binding and enzyme activity in a substrate-dependent manner and allowed identification of several important side chains. T110 is proposed to interact with the 12alpha-hydroxyl of 5beta-cholestane-3alpha,7alpha,12alpha-triol, whereas V367 seems to be crucial for correct positioning of the cholesterol C26 methyl group and for regioselective hydroxylation of this substrate. Distinct binding of the CYP27A1 substrates may provide insight into why phenotypic manifestations of cerebrotendinous xanthomatosis, a disease associated with CYP27A1 deficiency, are so diverse.  相似文献   

15.
Cytochrome P450 27A1 (P450 27A1) is an important metabolic enzyme involved in bile acid biosynthesis and the activation of vitamin D3 in mammals. Recombinant P450 27A1 heterologously expressed in Escherichia coli was found to be copurified with phospholipids (PLs). The PL content varied in different preparations and was dependent on the purification protocol. A link between the increased amounts of PLs and deterioration of the enzyme substrate binding properties was also observed. Tandem negative ionization mass spectrometry identified phosphatidylglycerol (PG) as the major PL copurified with P450 27A1. Subsequent reconstitution of P450 into exogenous PG vesicles assessed the effect of this contamination on substrate binding and enzyme activity. Two other PLs, phosphatidylethanolamine (PE) and phosphatidylserine (PS), were also tested. PG and PE increased the Kd for 5beta-cholestane-3alpha,7alpha,12alpha-triol and cholesterol binding, whereas PS had no effect on either substrate binding. PG and PE did not significantly alter 5beta-cholestane-3alpha,7alpha,12alpha-triol hydroxylase activity and even stimulated cholesterol hydroxylase activity. PS inhibited 5beta-cholestane-3alpha,7alpha,12alpha-triol hydrolyase activity and had no effect on cholesterol hydroxylase activity. Our study shows the potential for PLs to regulate the activity of P450 27A1 in vivo and alter the amount of cholesterol degraded through the "classical" and "alternative" bile acid biosynthetic pathways.  相似文献   

16.
Cholesterol 7 alpha-hydroxylase (cholesterol, NADPH: oxygen oxidoreductase, 7 alpha-hydroxylating, EC 1.14.13.17) was purified from liver microsomes of cholestryramine-fed male rats by using high-performance ion-exchange chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 52,000), and its dithionite-reduced CO complex exhibited an absorption maximum at 450 nm. The specific content of the enzyme was 9 nmol of cytochrome P-450/mg of protein. Upon reconstitution with NADPH-cytochrome P-450 reductase, the enzyme showed a high activity of cholesterol 7 alpha-hydroxylation with the turnover number of 50 min-1 at 37 degrees C. The reaction was inhibited neither by aminoglutethimide nor by metyrapone, but inhibited markedly by iodoacetamide and disulfiram. The reaction was also inhibited significantly by CO. The enzyme catalyzed hydroxylation of cholesterol with strict regio- and stereoselectivity and was inert toward other sterols which are intermediates in the conversion of cholesterol to bile acids, i.e. 7 alpha-hydroxy-4-cholesten-3-one (12 alpha-hydroxylation), 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol (25-hydroxylation), and taurodeoxycholate (7 alpha-hydroxylation). Unlike other cytochromes P-450 isolated from rat liver microsomes, the enzyme showed no activity toward testosterone and xenobiotics such as 7-ethoxycoumarin and benzo[a] pyrene. The NH2-terminal amino acid sequence of the enzyme was Met-Phe-Glu-Val(Ile)-Ser-Leu-, which was distinct from those of any other cytochromes P-450 of rat liver microsomes hitherto reported. These results indicate that the enzyme is a novel species of cytochrome P-450 so far not isolated from liver microsomes.  相似文献   

17.
A cytochrome P-450 that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3 (P-450cc24: P-450cholecalciferol24) was purified to electrophoretic homogeneity from the kidney mitochondria of female rats treated with vitamin D3 (Ohyama, Y., Hayashi, S., and Okuda, K. (1989) FEBS Lett. 255, 405-408). The molecular weight was 53,000, and its absorption spectrum showed peaks characteristic of cytochrome P-450. The turnover number was 22 min-1 and the specific content was 2.8 nmol/mg protein. The N-terminal amino acid sequence, Arg-Ala-Pro-Lys-Glu-Val-Pro-Leu-, is different from the N-terminal sequence of any other cytochrome P-450s so far reported. Upon reconstitution with the electron-transferring system of the adrenal mitochondria, the enzyme showed a high activity in hydroxylating 25-hydroxyvitamin D3 as well as 1 alpha,25-dihydroxyvitamin D3 at position 24. However, the purified enzyme hydroxylated neither vitamin D3 nor 1 alpha-hydroxyvitamin D3. The enzyme was also inactive toward xenobiotics. The enzyme hydroxylated 25-hydroxyvitamin D3 at position 24 but not at 1 alpha, indicating that the enzyme is distinct from that catalyzing 1 alpha-hydroxylation. The reaction followed Michaelis-Menten kinetics, and the Km value for 25-hydroxyvitamin D3 was 2.8 microM. Both vitamin D3 and 1 alpha-hydroxyvitamin D3 inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 in a competitive, concentration-dependent manner. 25-Hydroxyvitamin D3 24-hydroxylase activity was significantly inhibited by 7,8-benzoflavone, ketoconazole, and CO, whereas it was only slightly inhibited by aminoglutethimide, metyrapone, and SKF-525A. Mouse antibodies raised against the cytochrome P-450 inhibited the reaction about 70% and reacted with the P-450cc24 in immunoblotting but did not react with other kinds of cytochrome P-450 in rat liver microsomes and mitochondria.  相似文献   

18.
The stereochemistry at C-24 and C-25 of 27-nor-5beta-cholestane-3alpha,7alpha,12alpha,24 ,25-pentol, a principal bile alcohol in human urine, and its biosynthesis are studied. Four stereoisomers of the C(26)-24,25-pentols were synthesized by reduction with LiAlH(4) of the corresponding epoxides prepared from (24S)- or (24R)-27-nor-5beta-cholest-25-ene-3alpha, 7alpha,12alpha,24-tetrol. The stereochemistries at C-25 were deduced by comparison of the C(26)-24,25-pentols with the oxidation products of (24Z)-27-nor-5beta-cholest-24-ene-3alpha,7alpha, 12alpha-triol with osmium tetraoxide. On the basis of this assignment, the principal bile alcohol excreted into human and rat urine was determined to be (24S,25R)-27-nor-5beta-cholestane-3alpha,7alpha, 12alpha,24,25-pentol, accompanied by a lesser amount of (24R, 25R)-isomer. To elucidate the biosynthesis of the C(26)-24,25-pentol, a putative intermediate, 3alpha,7alpha, 12alpha-trihydroxy-27-nor-5beta-cholestan-24-one, derived from 3alpha,7alpha, 12alpha-trihydroxy-24-oxo-5beta-cholestanoic acid by decarboxylation during the side-chain oxidation of 3alpha,7alpha, 12alpha-trihydroxy-5beta-cholestanoic acid, was incubated with rat liver homogenates. The 24-oxo-bile alcohol could be efficiently reduced to yield mainly (24R)-27-nor-5beta-cholestane-3alpha,7alpha, 12alpha,24-tetrol. If a 25R-hydroxylation of the latter steroid occurs, it should lead to formation of (24S,25R)-C(26)-24,25-pentol. Now it has appeared that a major bile alcohol excreted into human urine is (24S,25R)-27-nor-5beta-cholestane-3alpha,7alpha, 12alpha, 24, 25-pentol, which might be derived from 3alpha,7alpha, 12alpha-trihydroxy-27-nor-5beta-cholestan-24-one via (24R)-27-nor-5beta-cholestane-3alpha, 7alpha,12alpha,24-tetrol.  相似文献   

19.
Monoclonal antibodies directed against the cytochrome P-450 catalyzing 25-hydroxylation of C27-steroids and vitamin D3 (Andersson, S., Holmberg, I., and Wikvall, K. (1983) J. Biol. Chem. 258, 6777-6781) have been prepared by immunization of mice in hind footpads. Lymph node cells from the mice were fused with the Sp 2/0-Ag 14 line of mouse myeloma cells. A monoclonal antibody, designated MAb-25-6, monospecific for cytochrome P-450(25) was, after coupling to Sepharose, able to bind to cytochrome P-450(25) and to immunoprecipitate the activity for 25-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol and vitamin D3 as well as that for 16 alpha-hydroxylation of testosterone when assayed in a reconstituted system. Two-dimensional gel electrophoresis of adult male rat liver microsomes and immunoblotting with MAb-25-6 showed a single spot with an apparent isoelectric point of 7.4 and Mr approximately 51,000. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting with MAb-25-6, cytochrome P-450(25) was shown to be male-specific and not detectable in adult female rat liver microsomes. N-terminal sequence analysis of cytochrome P-450(25) showed a structure identical with that of the male-specific steroid 16 alpha-hydroxylase isolated in several laboratories.  相似文献   

20.
A method for purification of C27-steroid hydroxylating cytochrome P-450 (cytochrome P-450(27)) from bovine liver mitochondria was developed. The purification procedure included enzyme extraction from submitochondrial particles with sodium cholate, ammonium sulfate fractionation and biospecific chromatography on cholate-Sepharose and adrenodoxin-Sepharose. The resulting enzyme preparation (317-fold purification, 16% yield) was not electrophoretically homogeneous but did not contain hemoprotein admixtures. The kinetic parameters of 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol 27-hydroxylation in a reconstituted system containing hepatoredoxin reductase, hepatoredoxin and cytochrome P-450(27) (Km = 23 microM, kcat = 0.3 s-1 at 25 degrees C) were determined. A reciprocal functional equivalency of hepatoredoxin reductase and adrenodoxin reductase as well as of hepatoredoxin and adrenodoxin in reconstituted systems of steroid 27-hydroxylation (liver) and cholesterol side chain cleavage (adrenal cortex) was established. This equivalency was thought to be due to the similarity in essential physico-chemical properties of reductase components which was especially well-pronounced in the case of hepatoredoxin and adrenodoxin. Estimation of the functional role of lysine, dicarboxylic acid and histidine residues in ferredoxin molecules by the chemical modification method revealed the similarity of the structural organization of their protein globules: the polar residues were shown to be essential for the maintenance of native conformation; dicarboxylic acid residues formed a binding domain for the interaction with electron transport proteins, whereas histidine residues seem to participate in electron transport. At the same time, cytochrome P-450(27) and cytochrome P-450 which split the side chain of cholesterol differ in their substrate specificity, immunochemical and catalytic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号