首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activation of glycogen synthase in the perfused rat liver is defective in severely diabetic rats. In the present study, activation of glycogen synthase by glucose and increased incorporation of [14C]glucose into glycogen by insulin are defective in hepatocytes isolated from alloxan diabetic rats. Acute activation of glycogen synthase in hepatocytes isolated from diabetic rats was restored by treatment of the rats with insulin in vivo. Restoration of synthase activation was not achieved by incubation of hepatocytes in the presence of insulin in vitro for up to 12 h. When isolated hepatocytes from diabetic rats were placed in primary culture in a serum-free defined medium over a 3-day period, glycogen synthesis was partially restored by cortisol and triiodothyronine and dramatically increased by insulin. Concomitant with restoration of [14C]glycogen synthesis was an insulin-mediated increase in glycogen synthase I and synthase phosphatase activity. Restoration of regulation of glycogen synthesis in primary cultures of hepatocytes from diabetic rats by insulin required the presence of cortisol and triiodothyronine. Primary cultures of hepatocytes from normal rats did not require triiodothyronine for insulin to effect glycogenesis over a 3-day period. These data demonstrate that insulin acts in a chronic manner in concert with other hormones to control synthase phosphatase activity, an effect which may be influencing acute control of hepatic glycogen synthesis.  相似文献   

2.
The effect of corticosterone on myofibrillar protein breakdown in diabetic rats was investigated in order to assess the possible counteracting effects of the secondary rise in plasma insulin concentrations which normally accompanies such treatment. Nτ-Methylhistidine excretion, an index of myofibrillar protein breakdown, was compared before and after corticosterone treatment (4.0 mg/100 g body wt. per day) of normal control, adrenalectomized, 10-day-streptozotocin-diabetic and adrenalectomized diabetic rats. Diabetic rats received 1.5 units of insulin/100 g body wt. per day throughout the experiment and showed marked hyperglycaemia and glucosuria during corticosterone treatment, whereas non-diabetic rats had only mild hyperglycaemia but elevated insulin concentrations. Corticosterone treatment increased the average rate of myofibrillar protein breakdown by 68% and 95% respectively in non-diabetic and diabetic rats. Net loss of muscle non-collagen protein for the same 7-day period was greater in diabetic than in non-diabetic animals (4.15 versus 2.84% per day), and the calculated average synthesis rates were lowest in diabetic rats. Adrenalectomy had little effect except to decrease slightly the rate of muscle protein breakdown. These results show that the rise in plasma insulin concentrations that accompanies exogenous corticosterone administration to non-diabetic rats diminishes the catabolic effect of this glucocorticoid on muscle. Insulin appears to antagonize the effects of the glucocorticoid by attenuating the increased rates of myofibrillar protein breakdown and, to a lesser extent, by limiting the decrease in synthesis rates.  相似文献   

3.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

4.
In 12 h fasted rats, rates of muscle protein synthesis were stimulated by refeeding for 1 h and by intragastric or intravenous infusion of an amino acid plus glucose mixture for 1 hr, but not by intravenous infusion of amino acids alone for 1 h. Intravenous injection of anti-insulin serum suppressed the response to feeding and to intragastric infusion, but not to intravenous infusion. It is concluded that the response of muscle protein synthesis to food intake is mediated by both insulin and amino acids acting in concert.  相似文献   

5.
The effect of insulin on the conversion of pyruvate into fatty acids in the presence and in the absence of glucose was studied in epididymal adipose tissue of the rat. 1. In adipose tissue from the normal rat, conversion of pyruvate into fatty acids is directly related to its concentration, the maximal rates occurring with 40mm- and the half-maximal rates with approx. 4mm-pyruvate. Insulin treatment did not greatly influence the maximal rates, but the half-maximal rates were at much lower pyruvate concentrations. This effect of insulin could be seen with physiological concentrations of this hormone (50-100muunits/ml). 2. In adipose tissue from acute-alloxan-diabetic and 36h-starved rats the conversion of pyruvate into fatty acids was almost zero until its concentration exceeded 3mm and then increased markedly as the concentration of pyruvate was increased. The lag phase of this S-shaped curve was decreased but not eliminated when insulin was present. This could account for the very low rates of glucose conversion into fatty acids in these metabolic states. Maximum rates of fatty acid synthesis were similar in the presence and in the absence of insulin, but only when 30-40mm-pyruvate was employed. Re-feeding of the starved rats or insulin treatment of the diabetic rats in vivo for several days restored these patterns to normal.  相似文献   

6.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

7.
The incorporation of 14C-labelled leucine or phenylalanine into alkali-soluble protein was determined under in vitro conditions in aortic intima-media of normal and streptozotocin-diabetic rats. Two weeks after the induction of diabetes the incorporation of the amino acids into aortic protein was reduced. When determined after diabetes of one week's duration the leucine-14C incorporation was not significantly reduced, while after 5 weeks of diabetes it was severely impaired. After administration of insulin to diabetic rats in vivo for 2 weeks there was no difference in leucine-14C incorporation between normal and diabetic rats. Addition of insulin (0.1 U/ml) in vitro had no effect on the leucine-14C incorporation in either normal or diabetic aorta during incubation times of 3 or 6 h. Elevation of the glucose concentration in vitro from 5.6 to 22.2 mmol/l did not influence the leucine incorporation in diabetic aorta. Both the aortic wet weight and the aortic content of alkali-soluble protein were decreased after 5 weeks of diabetes. The decrease in the protein content of aorta of diabetic animals suggest that the protein synthesis is impaired in vivo.  相似文献   

8.
The rate of change of the concentration of various metabolites in blood in vivo and of the metbolism of free fatty acids by the perfused liver in vitro was sutidied as a function of time after the induction of acute insulin deficiency in rats by administration of guinea pig anti-insulin serum; the rate of reversal of these changes afte treatment of the anti-insulinserum diabetic ratss with insulin was also investigated. The concentrations of blood glucose and ketonebodies, and plasma-free fatty acids increased rapidly after injection of anti-insuli serum, while plasma triglycerides increased more slowly. These alterations were restored rapidly toward normal after treatment of the diabetic animals with insulin...  相似文献   

9.
Cardiac atrophy following hypophysectomy was accompanied by decreased heart content of RNA and polysomes and increased levels of ribosomal subunits, suggesting that protein synthesis was restricted by a reduced supply of ribosomes and an imbalance between rates of peptide-chain initiation and elongation. During perfusion in vitro, provision of palmitate restored the normal balance between rates of initiation and elongation but protein synthesis was lower in hearts of hypophysectomized than normal rats, reflecting the lower RNA content of hearts from hormone-deficient animals. After the period of atrophy had passed, or after treatment with growth hormone and thyroxine, heart RNA content and rates of protein synthesis were equal to or greater than those found in normal hearts. When plasma levels of amino acids, glucose, fatty acids, and insulin, and rates of beating and ventricular pressure development observed in normal and hypophysectomized rats were simulated during in vitro perfusion, hearts from hormone-deficient rats had reduced rates of protein synthesis but unaltered rates of degradation. Cathepsin D activity in heart homogenates (+ Triton X-100) was elevated during cardiac atrophy when expressed per g of tissue but not when expressed per heart.  相似文献   

10.
Insulin infusion through the portal vein immediately after a pulse of [3-14C]pyruvate in 24 hr starved rats enhanced the appearance of [14C]glucose at 2, 5 and 10 min and glucose specific activity at 1, 2 and 20 min in blood collected from the cava vein at the level of the suprahepatic veins. Insulin infusion for 5 min decreased liver pyruvate concentration and enhanced both liver and plasma lactate/pyruvate ratio, and it decreased the plasma concentration of all amino acids. When insulin was infused together with glucose, [14C]glucose levels and glucose specific activity decreased in blood but there was a marked increase in liver [14C]glycogen, glycogen specific activity and glycogen concentration, and an increase in liver lactate/pyruvate ratio. The effect of insulin plus glucose infusion on plasma amino acids concentration was smaller than that found with insulin alone. It is proposed that insulin effect enhancing liver gluconeogenesis is secondary to its effect either enhancing liver glycolysis which modifies the liver's cytoplasmic oxidoreduction state to its more reduced form, increasing liver amino acids consumption or both. In the presence of glucose, products of gluconeogenesis enhanced by insulin are diverted into glycogen synthesis rather than circulating glucose. This together with results of the preceding paper (Soley et al., 1985), indicates that glucose enhances liver glycogen synthesis from C3 units in the starved rat, the process being further enhanced in the presence of insulin.  相似文献   

11.
Rat liver UDPglucose (UDPG) dehydrogenase activity was observed to be decreased after fasting and could be restored to normal levels after refeeding glucose. This could be prevented by prior injection of puromycin, suggesting de novo protein synthesis. Administration of insulin to normal rats on stock diet did not influence the enzyme activity. However, the enzyme activity was decreased in the diabetic condition. Intraperitoneal injection of insulin caused an enhancement of the enzyme activity in diabetic animals. Hepatic UDPG dehydrogenase activity was observed to be decreased on ascorbic acid feeding or intraperitoneal injection of the same. The intraperitoneal injection of either insulin or cAMP to ascorbic acid-treated rats resulted in an increase in enzyme activity reaching normal levels. The insulin-mediated increase could not be prevented by prior injection of puromycin, suggesting a post-translational effect. These results indicate two distinct mechanisms for in vivo regulation of hepatic UDPG dehydrogenase.  相似文献   

12.
Defective acute regulation of hepatic glycogen synthase by glucose and insulin, caused by severe insulin deficiency, can be corrected in adult rat hepatocytes in primary culture by inclusion of insulin, triiodothyronine, and cortisol in a chemically defined serum-free culture medium over a 3-day period (Miller, T. B., Jr., Garnache, A. K., Cruz, J., McPherson, R. K., and Wolleben, C. (1986) J. Biol. Chem. 261, 785-790). Using primary cultures of hepatocytes isolated from normal and diabetic rats in the same serum-free chemically defined medium, the present study addresses the effects of cycloheximide and actinomycin D on the chronic actions of insulin, triiodothyronine, and cortisol to facilitate the direct effects of glucose on the short-term activation of glycogen synthase. The short-term presence (1 h) of the protein synthesis blockers had no effect on acute activation of glycogen synthase by glucose in primary hepatocyte cultures from normal rats. Normal cells maintained in the presence of cycloheximide or actinomycin D for 2 and 3 days exhibited unimpaired responsiveness to glucose activation of synthase. The protein synthesis inhibitors were effective at blocking the restoration of glucose activation of synthase in diabetic cells in media which restored the activation in their absence. Restoration of glycogen synthase phosphatase activity by insulin, triiodothyronine, and cortisol in primary cultures of diabetic hepatocytes was also blocked by cycloheximide or actinomycin D. These data clearly demonstrate that restoration of acute glycogen synthase activation by glucose and restoration of glycogen synthase phosphatase activity in primary cultures of hepatocytes from adult diabetic rats are dependent upon the synthesis of new protein.  相似文献   

13.
1. Net glycogen accumulation was measured in sequentially removed samples during perfusion of the liver of starved streptozotocin-diabetic rats, and shown to be significantly impaired, compared with rates in normal (starved) rats. 2. In perfusions of normal livers with glucose plus C3 substrates, there was an increase in the proportion of glycogen synthetase 'a', compared with that in the absence of substrates. This response to substrates, followed in sequential synthesis and enzymic sensitivity in the perfused liver of diabetic rats were reversed by pretreatment in vivo with glucose plus fructose, or insulin. Glucose alone did not produce this effect. 4. Glucose, fructose, insulin or cortisol added to e perfusion medium (in the absence of pretreatment in vivo) did not stimulate glycogen synthesis in diabetic rats. 5. In intact diabetic rats, there was a decline in rates of net hepatic glycogen accumulation, and the response of glycogen synthetase to substrates. The most rapid rates of synthesis were obtained after fructose administration. 6. These results demonstrate that there is a marked inherent impairment in hepatic glycogen synthesis in starved diabetic rats, which can be rapidly reversed in vivo but no in perfusion. Thus hepatic glycogen synthesis does not appear to be sensitive to either the short-term direct action of insulin (added alone to perfusions) of to long-term insulin deprivation in vivo. The regulatory roles of substrates, insulin and glycogen synthetase in hepatic glycogen accumulation are discussed.  相似文献   

14.
The effect of semisynthetic human insulin on hepatic glucose output, peripheral glucose clearance, plasma levels of C-Peptide, free fatty acids and amino acids was compared with purified pork insulin using the glucose clamp technique. 8 normal overnight-fasted subjects received intravenous infusions of either human or porcine insulin at 20 mU/m2.min(-1) during 120 min achieving plasma insulin levels of approximately equal to 50 mU/l. Plasma glucose levels were maintained at euglycaemia by variable rates of glucose infusion. Hepatic glucose production measured by continuous infusion of 3-(3) H-glucose was similarly suppressed by both insulins to rates near zero. The metabolic clearance rate of glucose increased during infusion of human insulin by 120%, C-peptide levels decreased by 41% and plasma FFA concentrations fell by 74%. The respective changes during infusion of pork insulin were similar, 118%, 48% and 72%. Both insulins decreased the plasma levels of branched-chain amino acids, tyrosine, phenylalanine, methionine, serine and histidine similarly. Thus, the results demonstrate that semisynthetic human and porcine insulin are aequipotent with respect to suppression of hepatic glucose output, stimulation of glucose clearance, inhibition of insulin secretion, lipolysis and proteolysis.  相似文献   

15.
Protein synthesis in skeletal muscle is reduced by as much as 50% as early as 4 h after a septic challenge in adults. However, the effect of sepsis on muscle protein synthesis has not been determined in neonates, a highly anabolic population whose muscle protein synthesis rates are elevated and uniquely sensitive to insulin and amino acid stimulation. Neonatal piglets (n = 10/group) were infused for 8 h with endotoxin [lipopolysaccharide (LPS), 0 and 10 microg. kg(-1). h(-1)]. Plasma amino acid and glucose concentrations were kept at the fed level by infusion of dextrose and a balanced amino acid mixture. Fractional protein synthesis rates were determined by use of a flooding dose of [(3)H]phenylalanine. LPS infusion produced a septic-like state, as indicated by an early and sustained elevation in body temperature, heart rate, and plasma tumor necrosis factor-alpha, interleukin-1, cortisol, and lactate concentrations. Plasma levels of insulin increased, whereas glucose and amino acids decreased, suggesting the absence of insulin resistance. LPS significantly reduced protein synthesis in longissimus dorsi muscle by only 11% and in gastrocnemius by only 15%, but it had no significant effect in masseter and cardiac muscles. LPS increased protein synthesis in the liver (22%), spleen (28%), kidney (53%), jejunum (19%), diaphragm (21%), lung (50%), and skin (13%), but not in the stomach, pancreas, or brain. These findings suggest that, when substrate supply is maintained, skeletal muscle protein synthesis in neonates compared with adults is relatively resistant to the catabolic effects of sepsis.  相似文献   

16.
Fetal nutritional stress may result in intrauterine growth restriction and postnatal insulin resistance. To determine whether insulin resistance can begin in utero, we subjected late-gestation (130-135 days) ewes to 120 h of complete fasting and compared the results with our previous work in fed ewes (38). We determined the effect of insulin and/or recombinant human (rh)IGF-I infusion on ovine fetal phenylalanine kinetics, protein synthesis, and phenylalanine accretion. Experimental infusates were 1) saline, 2) rhIGF-I plus a replacement dose of insulin (40 nmol IGF-I/h + 16 mIU insulin/h), 3) insulin (890 mIU/h), and 4) IGF-I plus insulin (40 nmol IGF-I/h + 890 mIU insulin/h). During hormone infusion, both glucose and amino acid concentrations were clamped at basal concentrations. Amino acid infusion was required during infusion of either hormone to maintain plasma concentrations constant. However, the amount required during insulin infusion was less than during IGF-I infusion and 40% less than the amount required during identical studies in nonfasted animals. Phenylalanine used for protein synthesis and accretion was increased compared with control animals but again less so than in the nonfasted animals. In contrast to nonfasted animals, neither hormone increased the fractional synthetic rate of skeletal muscle protein nor that of plasma albumin. These results indicate that a short but severe nutritional stress can significantly alter the fetal anabolic response to insulin even when both glucose and amino acid substrate supplies are restored. Therefore, adaptive responses characterized by insulin resistance begin in utero when the fetus is subjected to sufficient nutritional stress.  相似文献   

17.
1. Non-anaesthetized normal and diabetic rats were fasted for 1 day, and [U-14C]glycine, or [U-14C]serine, or [U-14C]- plus [3-3H]-glucose was injected intra-arterially. The rates of synthesis de novo/irreversible disposal for glycine, serine and glucose, as well as the contribution of carbon atoms by the amino acids to plasma glucose, were calculated from the integrals of the specific-radioactivity-versus-time curves in plasma. 2. The concentrations of both glycine and serine in blood plasma were lower in diabetic than in fasted normal animals. 3. The rates of synthesis de novo/irreversible disposal of both amino acids tended to be lower in diabetic animals, but the decrease was statistically significant only for serine (14.3 compared with 10.5 mumol/min per kg). 4. Of the carbon atoms of plasma glucose, 2.9% arose from glycine in both fasted normal and diabetic rats, whereas 4.46% of glucose carbon originated from serine in fasted normal and 6.77% in diabetic rats. 5. As judged by their specific radioactivities, plasma serine and glycine exchange carbon atoms rapidly and extensively. 6. It was concluded that the turnover of glycine remains essentially unchanged, whereas that of serine is decreased in diabetic as compared with fasted normal rats. The plasma concentration of both amino acids was lower in diabetic rats. Both glycine and serine are glucogenic. In diabetic rats the contribution of carbon atoms from glycine to glucose increases in direct proportion to the increased glucose turnover, whereas the contribution by serine becomes also proportionally higher.  相似文献   

18.
Insulin stimulates muscle glucose disposal via both glycolysis and glycogen synthesis. Insulin activates glycogen synthase (GS) in skeletal muscle by phosphorylating PKB (or Akt), which in turn phosphorylates and inactivates glycogen synthase kinase 3 (GSK-3), with subsequent activation of GS. A rapamycin-sensitive pathway, most likely acting via ribosomal 70-kDa protein S6 kinase (p70(S6K)), has also been implicated in the regulation of GSK-3 and GS by insulin. Amino acids potently stimulate p70(S6K), and recent studies on cultured muscle cells suggest that amino acids also inactivate GSK-3 and/or activate GS via activating p70(S6K). To assess the physiological relevance of these findings to normal human physiology, we compared the effects of amino acids and insulin on whole body glucose disposal, p70(S6K), and GSK-3 phosphorylation, and on the activity of GS in vivo in skeletal muscle of 24 healthy human volunteers. After an overnight fast, subjects received intravenously either a mixed amino acid solution (1.26 micromol.kg(-1).min(-1) x 6 h, n = 9), a physiological dose of insulin (1 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 6), or a pharmacological dose of insulin (20 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 9). Whole body glucose disposal rates were assessed by calculating the steady-state glucose infusion rates, and vastus lateralis muscle was biopsied before and at the end of the infusion. Both amino acid infusion and physiological hyperinsulinemia enhanced p70(S6K) phosphorylation without affecting GSK-3 phosphorylation, but only physiological hyperinsulinemia also increased whole body glucose disposal and GS activity. In contrast, a pharmacological dose of insulin significantly increased whole body glucose disposal, p70(S6K), GSK-3 phosphorylation, and GS activity. We conclude that amino acids at physiological concentrations mediate p70(S6K) but, unlike insulin, do not regulate GSK-3 and GS phosphorylation/activity in human skeletal muscle.  相似文献   

19.
The effect of corticosterone treatment on the sensitivity of muscle protein synthesis to insulin infusion was assessed in post-absorptive young rats. To select the optimal time period for corticosterone treatment, protein synthesis was measured by injection of L-[2,6-3H]phenylalanine (1.5 mmol/kg body weight) 1, 4, 12 or 24 h after injection of corticosterone (5 mg/kg body wt.). Muscle protein synthesis was significantly decreased at 4 h and the effect was maximal by 12 h; liver protein synthesis was elevated at 12 h and 24 h. The dose-response of muscle protein synthesis to a 30 min infusion with 0-150 munits of insulin/h was then compared in rats pretreated with corticosterone (10 mg/100 g body wt.) or vehicle alone. When no insulin was infused, corticosterone inhibited protein synthesis in gastrocnemius muscle. High doses of insulin stimulated protein synthesis, but the inhibition by corticosterone was similar to that in the absence of insulin. At intermediate doses of insulin there was an increased requirement for insulin to elicit an equivalent response in muscle protein synthesis. Plantaris muscle responded in a manner similar to that of gastrocnemius, but neither soleus muscle nor liver responded significantly to insulin. These data suggest that corticosterone has two modes of action; one which is independent from and opposite to that of insulin, and a second which causes insulin-resistance through a decrease in sensitivity rather than a change in responsiveness.  相似文献   

20.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号