首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实行肥料科学配施与红壤培肥管理是山区草业发展的重要技术环节.我国南方红壤区土壤普遍存在着硼、钼、硒元素缺乏现象,合理施用钼、硼、硒微量元素肥料对豆科与禾本科牧草的植株生长以及提高产草量和种子产量有明显的促进作用.文中概述了我国红壤区土壤中钼、硼、硒元素的存在形态、化学特征、内在变化、可给性及含量状况,探讨了施用3种微量元素肥料对牧草生长过程有效养分吸收与累积的影响及其相应生理功能,综述了牧草植物缺乏钼、硼、硒元素的特征症状、诊断方法及其矫治措施.  相似文献   

2.
Summary Significantly higher contents of boron, molybdenum and zinc were observed in cabbages in urban than in rural areas. The levels of extractable boron, copper, lead, nickel and zinc were markedly enhanced in the urban soils but there was no corresponding enhancement of the levels of copper, lead and nickel in the cabbages.  相似文献   

3.
A field site near Humboldt, Saskatchewan, was annually treated with hog or cattle manure and cropped to canola, spring wheat, barley, and canola from 1997 to 2000. During each growing season, soil was analyzed for microbial populations in terms of activity and community structure, and crops were assessed for root rot and foliar diseases. Microbial activity in soils treated with cattle manure was higher than in soils treated with hog manure or urea. Similarly, nitrous oxide emissions from soil increased with increasing rates of hog and cattle manure. Potential human pathogens, including Rahnella, Serratia, Proteus, Leclercia, and Salmonella species, were identified in soils that received cattle manure, whereas pseudomonads were the dominant species in the hog-manure-treated soil. Fecal coliforms were confirmed in soils that received hog or cattle manure. However, Enterobacteriaceae populations were 10-fold higher in soils receiving cattle manure than in soils receiving the other treatments. Increasing cattle manure rates increased fecal coliform population, but there was no indication that increased hog manure rates increased fecal coliform populations. Addition of urea, hog manure, or cattle manure to the soil did not increase foliar disease in wheat, barley, and canola and had variable effects on root rot incidence in cereals.  相似文献   

4.
Phosphorus was added to two acidic upland soils (a Cambisol and a Ferralsol) at two rates (9 mg P kg−1 and 145 mg P kg−1) either in an inorganic P form (KH2PO4) or as a green manure (Tithonia diversifolia H. at 2.5 g kg−1 and 40 g kg−1). The effect of P source on the chemical availability of P was assessed in an incubation experiment by measuring resin extractable P, soluble molybdate reactive (DMR-P) and unreactive P (DMU-P). Soil pH and extractable Al were monitored during the incubation period of 49 days. Green manure addition caused an immediate and sustained increase in soil pH and an immediate and sustained decrease in extractable Al. Labile P (resin P + DMR-P + DMU-P) was increased more by P added as a green manure than when added in inorganic form in one soil (Ferralsol), while it decreased or did not differ in the other one (Cambisol). In both soils, the concentrations of soluble DMU-P were frequently higher where Tithonia had been added. The effects of green manure amendment on physical factors governing the phosphorus supply through diffusive transport were also investigated. Aggregate size distribution was substantially changed by green manure amendment due to a shift in the percentage of microaggregates (<250 μm in diameter) to larger sizes. Changes in soil aggregation as a consequence of green manure amendment led to a reduction in specific surface area (SSA) of the whole soil. Coupled with the large increase in effective cation exchange capacity caused by green manure amendment in both soils, and the decrease in SSA, there was an increase in the net negative surface charge density in both soils. In summary, at a large addition rate – and in addition to the well-known effect derived from the extra supply in P, green manure amendment may improve the chemical availability and diffusive supply of P through the following mechanisms: (i) an increase in soil pH increasing the solubility of phosphate sources; (ii) a decrease in extractable Al reducing the fixation of added P; (iii) increased macro-aggregation and reduced specific surface area and porosity leading to fewer sorption sites for P and hence enhanced diffusion rates; and (iv) increased negative charges and reduced positive charges at the soil surface resulting in a net increase in repulsive force for P. The induced changes in most measured soil properties were smaller in the Ferralsol than in the Cambisol. This revised version was published online in June 2005 with a corrected article title.  相似文献   

5.
Summary It is shown that soils which fail to give Azotobacter growth when inoculated in the original elective medium may still contain viable Azotobacter cells. These develop into normal cultures when 0.00005% Na2MoO4 is added to the liquid medium.This phenomenon is explained as a result of the low molybdenum content of the soils used.In view of the possible influence of molybdenum on soil fertility the soil plaque method was tried successfully for the demonstration of a molybdenum deficiency. of soil samples.  相似文献   

6.
Short-term effects of amoxicillin on bacterial communities in manured soil   总被引:1,自引:0,他引:1  
Antibiotic-resistant bacteria, nutrients and antibiotics that enter the soil by means of manure may enhance the proportion of bacteria displaying antibiotic resistance among soil bacteria and may affect bacterial community structure and function. To investigate the effect of manure and amoxicillin added to manure on soil bacterial communities, microcosm experiments were performed with two soil types and the following treatments: (1) nontreated, (2) manure-treated, (3) treated with manure supplemented with 10 mg amoxicillin kg(-1) soil and (4) treated with manure supplemented with 100 mg amoxicillin kg(-1) soil, with four replicates per treatment. Manure significantly increased the total CFU count and the amoxicillin-resistant CFU count of both soil types. However, only the soil with a history of manure treatment showed a significant increase in the relative number of amoxicillin-resistant bacteria as a result of amoxicillin amendment. The majority of plasmids exogenously isolated from soil originated from soil treated with amoxicillin-supplemented manure. All 16 characterized plasmids carried the bla-TEM gene, and 10 of them belonged to the IncN group. The bla-TEM gene was detected in DNA directly extracted from soil by dot-blot hybridization of PCR amplicons and showed an increased abundance in soil samples treated with manure. Molecular fingerprint analysis of 16S rRNA gene fragments amplified from soil DNA revealed significant effects of manure and amoxicillin on the bacterial community of both soils.  相似文献   

7.
叶面喷施微肥对川白芷主要有效成分含量的影响   总被引:1,自引:0,他引:1  
在川白芷生长旺盛期叶面喷施锌、硼、钼,研究微量元素锌、硼、钼配合喷施对川白芷主要有效成分含量的影响以及最适宜的喷施量.结果表明: 叶面喷施锌、硼、钼有利于川白芷欧前胡素和总香豆素含量的提高,对异欧前胡素含量的影响不显著;硼对欧前胡素和总香豆素含量的积累影响最大,锌次之,钼最小;硼和钼互作对欧前胡素含量有拮抗效应,锌和硼互作对总香豆素含量有协同效应;施锌0.15~0.24 kg·hm-2、硼2.02~2.36 kg·hm-2、钼0.08~0.13 kg·hm-2时,川白芷总香豆素含量≥0.7%;施锌0.15~0.20 kg·hm-2、硼1.37~1.47 kg·hm-2、钼0.09~0.13 kg·hm-2时,欧前胡素含量≥0.2%.叶面喷施锌、硼、钼有利于川白芷中香豆素类成分的积累和品质的提高.  相似文献   

8.
Summary The effect of organic amendments (cow manure and green manure) on monthly variations of soluble P in a volcanic-ash-derived soil was studied. Soluble P (Truog's method) showed minimums at the beginning of August and at the beginning of January. Cow manure produced a remarkable increase of soluble P and removed the January minimum. In soils treated with legume green manure, soluble SP markedly decreased during the first and second month. Data for organic P suggested that the summer decreases of soluble P were partly due to microbial immobilization. In soil treated with mineral fertilizers only, more than half of the P added as superphosphate was found as Al and Fe phosphate after one month. Organic amendments, especially cow manure, decreased the immobilization of superphosphate P.  相似文献   

9.
This laboratory scale experiment was designed to study the suitability of organic wastes from paper and food seasoning industries to improve the soil organic carbon for rice cultivation. Lignin-rich wastewater from paper industry and nitrogen-rich effluent from a food industry at suitably lower concentrations were used at two levels of green manure to enhance the soil organic carbon fraction over time. Both the groups of soils with or without Sesbania were incubated under submerged condition at 25 degrees C for 15 days. Wastewaters from paper industry (WP), food industry (WS), and a combination of WP+WS were added separately to both the treatment groups in flasks. After 103 days of incubation, from all the three treatments and control, total organic carbon and alkali-soluble organic carbon fractions were analyzed. Results indicated that in all the three treatments containing green manure amended with industrial wastewaters, the organic carbon content increased significantly. The alkali-soluble organic carbon fraction was increased by 59% in the soil amended with green manure containing WS and by 31% in the treatment without green manure compared to control. The paper mill waste water namely, WP, increased the organic carbon only in the soil containing green manure by 63%. The combined treatment of WP+WS with green manure increased alkali-soluble organic carbon fraction by 90% compared to control, while in the treatment without green manure, the organic carbon increase was 71%. Overall, the combined treatment WP+WS with green manure could increase the alkali-soluble organic carbon fraction more than all other treatments. Hence, wastewater rich in organics from paper and food industries can be efficiently used to temporarily increase the soil organic carbon content.  相似文献   

10.
Dairy manure and tillage effects on soil fertility and corn yields   总被引:1,自引:0,他引:1  
Organic amendments have received renewed attention to improve soil fertility for crop production. A randomized complete block split plot experiment was conducted to evaluate the dairy manure (DM) amendments of soil for corn (Zea mays L. cv. Monsanto 919) production under different tillage systems. Main plot treatments were no-till (NT), conventional tillage (CT), and deep tillage (DT), and subplot treatments were chemical fertilization (DM(0)), and DM at 10Mgha(-1)yr(-1) (DM(10)) and 20Mgha(-1)yr(-1) (DM(20)) with supplemental chemical fertilization. Results show that tillage and DM had significantly reduced bulk density (rho(b)) with greater porosity (f(t)) and hydraulic conductivity (K(fs)) than soils under NT and DM(0). Manuring was effective to improve soil physical properties in all tillage treatments. While manure significantly increased C sequestration, the N concentration was influenced by both tillage and manure with significant interaction. The CT significantly increased P as did the addition of manure. However, with manure, K was significantly increased in all tillage treatments. While tilled soils produced taller plants with higher grain yields, and water-use efficiency than NT soils, manuring, in contrast, increased corn harvest index. Manure exerted significant quadratic effect on corn biomass N and K uptake. The variable effects of tillage and dairy manuring on soil properties and corn growth are most probably related to "transitional period" in which soil ecosystems may have adjusting to a new equilibrium.  相似文献   

11.
A study was carried out with maize as the test crop to investigate the bioavailability and leachability of heavy metals (HM) from HM-contaminated soils treated with composted manure. The application of composted manure increased the maize shoot growth by 32.3% and root growth by 30.5% compared with fresh manure. The concentration of HM in maize shoot varied in the order lead (Pb) > nickel (Ni) > zinc (Zn) > chromium (Cr) > copper (Cu) > cadmium (Cd). Whether for the shoot or root, the heavy metal concentrations decreased as the length of manure composting increased, but concentrations were higher in the root than the shoot. Composting decreased the bioavailability and leachability of HM and, hence, their export to the environment more effectively than direct use of fresh manure. Thus, the use of composted manure in place of fresh manure in polluted soils would be more beneficial for mitigating HM pollution.  相似文献   

12.
Potential environmental hazards from the excess accumulation of swine (Sus scrofa domesticus) manure in eastern North Carolina and new state guidelines on treatment alternatives have necessitated the reevaluation of best management practices for disposal of swine waste (manure and effluent) as a fertilizer source on local crop land. Creation of a value-added product is one viable means of utilizing and economically redistributing the nutrients in swine manure. Incubation studies using four agricultural soils from eastern North Carolina were conducted with pelletized processed swine lagoon solids (PSLS) (1.7% N, 2.5% P, 0.12% Cu and 0.18% Zn) composed of dewatered swine lagoon sludge plus rock flour. The PSLS was added at three application rates (0, 200, 400 mg N kg−1 soil) and incubated for 16 weeks at 25°C. The soil was sampled at 0, 1, 2, 4, 8, 12, and 16 weeks and analyzed for NO3–N, NH4–N and Mehlich III-extractable P, Zn, and Cu. High concentrations of NH4–N and low concentrations of NO3–N were present in the soils shortly after addition of PSLS. After the second week, extractable NH4–N dropped to <4 mg kg−1, while the soil concentration of NO3–N increased rapidly. The amount of NO3–N generated reached 90% of its final value after the fourth week. Across the four soils, 24–35% of the added N, 15–50% of the added P, 20–50% of the added Zn and 15–20% of the added Cu was extractable after 8 weeks. The PSLS is an excellent source of P, but may require additional N if used as a fertilizer source for most row crops.  相似文献   

13.
The effect of adding organic manure to three soils with differing textures on changes in leaf water potential (LWP) and yield of barley (cv. Loyola) was investigated under controlled growth-chamber conditions. Cattle manure was applied to the soils in pots at rates equivalent to 0, 15, 25, 50 and 100 t ha-1. Plants were subjected to water stress by withholding water at three different stages of grwoth.The results show that the addition of cattle manure significantly increased (p<-0.05) the organic carbon (OC) content of all the soils. LWP remained consistently high during the entire growing period in the control plants. As stress progressed, LWP in the stressed plants decreased. However, treatments with high OC contents had significantly higher LWP compared to those which had less. The former plants experienced less water stress than the latter.Yields were higher in the control than stressed plants. Within the stressed plants however, treatments with high OC content had significantly higher yields. An effect of soil texture was also noted. Generally, the influence of manure application on LWP and yields were more pronounced in sand and loam than clay soils.  相似文献   

14.
有机物料对土壤镉形态及其生物有效性的影响   总被引:14,自引:0,他引:14  
张秋芳  王果  杨佩艺  方玲 《应用生态学报》2002,13(12):1659-1662
采用盆栽试验,研究了淹水种稻条件下添加猪粪和泥炭对红壤和潮土中内源和外源Cd形态及其生物有效性的影响。结果表明,土壤中内源Cd在各形态之间的分布比较均匀;添加外源Cd时Cd主要分布于交换态,从分蘖期到成熟期,内源Cd交换态普遍升高,添加外源Cd时交换态普遍降低。有机物料对内源Cd交换态的影响不显著,但当添加外源Cd时则对交换态有显著影响,在不添加外源Cd的条件下,有机物料普遍促进水稻根系对Cd的吸收。在添加外源Cd的条件下,有机物料普遍抑制水稻根系对Cd的吸收,猪粪的抑制效果强于泥炭,水稻根系对Cd与Fe的累积呈显著抑制作用。  相似文献   

15.
Summary In a glasshouse experiment with a boron deficient soil the application of nitrogen was found to decrease the boron concentration and boron uptake by lucerne (Medicago sativa). Without added boron, nitrogen applications killed the lucerne, probably by inducing severe boron deficiency. With added boron, the lowest rate of nitrogen application increased lucerne yield but further additions depressed yields. The effect was due to a physiological interaction rather than an effect of the nitrogen on the availability of the boron in the soil.  相似文献   

16.
Trace element budget in an African savannah ecosystem   总被引:1,自引:1,他引:0  
The concentration of selected trace elements (Co, Cu, Fe, Mn, Mo, Se, and Zn) were analysed in soils, grass, bush, and tree samples from the Mole National Park, Ghana. The distribution of the essential nutrients: cobalt, copper, manganese, and selenium is controlled by bedrock geology, whereas iron, molybdenum, and zinc distribution is controlled by soil and hydrological processes. In the soils, iron, manganese, and cobalt are largely fixed in the mineral fraction while most of the copper, molybdenum, and selenium in the soils can be extracted by disodium ethylenediaminetetracetate. Copper, cobalt, and manganese appear to be preferentially concentrated in grass species while molybdenum and selenium are concentrated in browse plants. Variations in uptake exist between wet and dry seasons with all trace elements studied, except iron and manganese, showing a marked increased availability in the wet season and increased concentration in the residual fraction of the mineral and organic soils in the dry season. In the dry season the plant concentration of molybdenum and selenium decreased while copper and zine showed increased concentrations and this may be related to a lower pH of the groundwaters at this time. A budget of metal input and output in the ecosystem at Mole has been computed. From this potential dietary deficiencies in cobalt can be observed, however for other metals soil and plant concentrations are sufficient to prevent straightforward deficiencies while the concentrations of molybdenum and selenium are sufficiently low to be considered safe.  相似文献   

17.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

18.
Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.  相似文献   

19.
Soil amendment with organic materials (crop residues animal manure, and green manure) reportedly has positive effects on soil properties, from acidity to plant-nutrient availability. To examine that hypothesis, an incubation study was conducted to assess the changes in some chemical properties of three different tropical soils (Andisol, Ultisol, and Oxisol) amended with chicken manure and green manure (Leucaena leucocephala) at the rate of 10tha(-1). The results showed that organic amendments raised soil pH and EC, regardless of the type of manure used. Manuring lowered the concentrations of Mehlich-3 extractable Ca, P, Mn and Si in all soils and decreased the concentration of Mg in the Ultisol and Oxisol. However, manure amendment led to increases in the concentrations of Mg and K in the Andisol. Organic amendments caused a decrease in KCl extractable Al. Initial soluble C levels were highest in the Oxisol (60mumolg(-1)) and lowest in the Andisol (20mumolg(-1)). The concentration of soluble C decreased exponentially with duration of incubation. Three low molecular weight organic molecules (acetic acid, catechol and oxalic acid) out of the eight tested were found in all manure-amended soils. This study quantified the release of some Al chelating organic acids, the reduction of exchangeable Al, and the changes in major plant-nutrients when organic materials were added to nutrient poor, tropical acid soils.  相似文献   

20.
The objective of this work was to assess the effect of dilute bovine manure (1.0% and 0.1%) versus that of no manure on attachment and subsequent detachment of Cryptosporidium parvum oocysts to soil. Manure enhanced the attachment of oocysts to soil particles; the maximum attachment was observed with 0.1% manure. Oocyst attachment was partially reversible; maximum detachment was observed with dilute manure. These results indicate that oocyst attachment to soil is substantially affected by bovine manure in a complex manner and should have implications for how oocysts may be transported through or over soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号