首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《BBA》1986,850(1):64-71
NAD+ supplied to purified Solanum tuberosum mitochondria caused progressive inhibition of succinate oxidation in State 3. This inhibition was especially pronounced at alkaline pH and at low succinate concentrations. Glutamate counteracted the inhibition. NAD+ promoted oxaloacetate accumulation in State 3; supplied oxaloacetate inhibited O2 uptake in the presence of succinate much more severely in State 3 than in State 4. NAD reduction linked to succinate oxidation by ATP-dependent reverse electron transport was likewise inhibited by oxaloacetate. We conclude that NAD+-induced inhibition of succinate oxidation is due to an inhibition of succinate dehydrogenase resulting from increased accumulation of oxaloacetate generated from malate oxidation via malate dehydrogenase. The results are discussed in the context of the known regulatory characteristics of plant succinate dehydrogenase.  相似文献   

2.
Tight binding of oxaloacetate to succinate dehydrogenase   总被引:1,自引:0,他引:1  
[14C]Oxaloacetate forms a stable complex with succinate dehydrogenase which withstands repeated Sephadex filtration. Oxidized glutathione, 2-thenoyltrifluoroacetone, KCN and ageing at +4° at neutral pH do not prevent the enzyme to bind oxaloacetate. The binding is prevented by succinate or malonate but the complex, once formed, can not be split by these compounds, although the enzyme activity can be restored; the reconstitutive property of succinate dehydrogenase is, however, irreversibly lost. Bound oxaloacetate does not exchange with added oxaloacetate, but can be released by perchloric acid. Sonic particles of beef heart mitochondria can also bind oxaloacetate. However, this complex can be split by succinate or malonate.  相似文献   

3.
The effect of disulfiram on succinate oxidase and succinate dehydrogenase activities of beef heart submitochondrial particles was studied. Results show that disulfiram inhibits both functions. Succinate and malonate suppress the inhibitory action of disulfiram when succinate dehydrogenase is stabilized in an active conformation. Disulfiram is not able to inhibit the enzyme when succinate dehydrogenase is inactivated by oxaloacetate. The inhibitory effect of disulfiram is reverted by the addition of dithiothreitol. From these results, it is proposed that disulfiram inhibits the utilization of succinate by a direct modification of an -SH group located in the catalytically active site of succinate dehydrogenase.  相似文献   

4.
It is shown that the process of activation of succinate oxidase from inner membranes of the rat liver mitochondria by succinate and malonate is specific for the succinate dehydrogenase component of oxidase. These activation constants are comparable with those found by other authors in activation of succinate dehydrogenase and succinate oxidase from oxaloacetate-preincubated submitochondrial fragments of the bull heart. Probably, the 4-fold activation of succinate oxidase from inner membranes of the liver mitochondria reported in this paper depends on separation of endogenous oxaloacetate from the succinate dehydrogenase component of oxidase.  相似文献   

5.
The extent of the deactivation of the mitochondrial succinate dehydrogenase by oxaloacetate is a function of the redox state of the enzyme. Oxidized enzyme is deactivated by much lower concentrations of oxaloacetate than those needed to deactivate reduced enzyme. An accurate method for measuring this relationship is the redox titration of the enzymic activity of succinate dehydrogenase, carried out in the presence of oxaloacetate. For each concentration of oxaloacetate a different redox titration curve was reported with the apparent mid-potential decreasing with increasing oxaloacetate. These results are compatible with a model which proposes that both oxidized and reduced enzymes can form the catalytically non-active complex with oxaloacetate, but that the complex formed the the oxidized enzyme is more stable than that formed by the reduced enzyme. When the oxaloacetate concentration is low, reduction of the enzyme will lower the fraction of the succinate dehydrogenase-oxaloacetate complex, a reaction which we observe as reductive activation of the enzyme. If this experiment is repeated in the presence of high concentration of oxaloacetate, no activation of the enzyme takes place, but the low stability of the reduced enzyme oxaloacetate complex is revealed by the rapid exchange of the enzyme-bound oxaloacetate with the free ligand. The rate of this exchange is extremely slow at high positive potential and becomes faster upon lowering of the poise potential. The reductive activation of the succinate dehydrogenase is regarded as a two step reaction. In the first step the reduced non-active complex releases the oxaloacetate and in the second step the active form of the enzyme is evolved. These two steps can be observed experimentally; Reductive activation at a redox potential higher than the mid-potential of the oxaloacetate-malate couple (minus 166 mV) is characterized by Ea = 18 Kca/mole, the final equilibrium level of activation decreases upon lowering of the temperature. Reduction activation of the enzyme at minus 240 mV is a very rapid reaction which goes to completion at all temperatures tested and has an activation energy of 12.5 Kcal/mole. The mechanism of the reductive activation and its possible role in the regulation of succinate dehydrogenase in the mitochondria is discussed.  相似文献   

6.
The binding site for oxaloacetate on succinate dehydrogenase   总被引:2,自引:0,他引:2  
Oxaloacetate, a competitive inhibitor of succinate dehydrogenase, bound with a sulfhydryl group of the enzyme to abolish the enzymic activity. Subsequently a thiosemiacetal was apparently formed to render the inhibition practically irreversible. The dehydrogenase, after taking up 25 silver equivalents per flavin, bound little oxaloacetate.  相似文献   

7.
Succinate:ubiquinone reductase was shown to catalyze the oxidation of L- and D-stereoisomers of malate by artificial electron acceptors and ubiquinone. The rate of malate oxidation by succinate:ubiquinone reductase is by two orders of magnitude lower than that for the natural substrate--succinate. The values of kinetic constants for the oxidation of D- and L-stereoisomers of malate are equal to: V infinity = 0.1 mumol/min/mg protein, Km = 2 mM and V infinity = 0.05 mumol/min/mg protein, Km = 2 mM, respectively. The malate dehydrogenase activity is fully inhibited by the inhibitors of the dicarboxylate-binding site of the enzyme, i.e., N-ethylmaleimide and malonate and is practically insensitive to carboxin, a specific inhibitor of the ubiquinone-binding center. The enol form of oxaloacetate was shown to be the product of malate oxidation by succinate:ubiquinone reductase. The kinetics of inhibition of the enzyme activity by the ketone and enol forms of oxaloacetate was studied. Both forms of oxaloacetate effectively inhibit the succinate:ubiquinone reductase reaction.  相似文献   

8.
Respiratory complex II (succinate:ubiquinone oxidoreductase) connects the tricarboxylic acid cycle to the electron transport chain in mitochondria and many prokaryotes. Complex II mutations have been linked to neurodegenerative diseases and metabolic defects in cancer. However, there is no convenient stoichiometric assay for the catalytic activity of complex II. Here, we present a simple, quantitative, real-time method to detect the production of fumarate from succinate by complex II that is easy to implement and applicable to the isolated enzyme, membrane preparations, and tissue homogenates. Our assay uses fumarate hydratase to convert fumarate to malate and uses oxaloacetate decarboxylating malic dehydrogenase to convert malate to pyruvate and to convert NADP+ to NADPH; the NADPH is detected spectrometrically. Simple protocols for the high-yield production of the two enzymes required are described; oxaloacetate decarboxylating malic dehydrogenase is also suitable for accurate determination of the activity of fumarate hydratase. Unlike existing spectrometric assay methods for complex II that rely on artificial electron acceptors (e.g., 2,6-dichlorophenolindophenol), our coupled assay is specific and stoichiometric (1:1 for succinate oxidation to NADPH formation), so it is suitable for comprehensive analyses of the catalysis and inhibition of succinate dehydrogenase activities in samples with both simple and complex compositions.  相似文献   

9.
The activity of succinate dehydrogenase from bull adrenal cortex was studied as affected by malonate and oxaloacetate. The both substrate analogs without preincubation (separately and in the mixture) inhibit the enzyme by the competitive type. After a 3 min oxaloacetate preincubation of the enzyme inhibition is of a mixed character. Malonate under these conditions lowers the oxaloacetate effect without changing the type of inhibition. It is supposed that the protective effect is due to a high rate of formation and decay of the enzyme-inhibitory malonate complex.  相似文献   

10.
Properties of succinate oxidation in tomato fruit mitochondria   总被引:5,自引:5,他引:0       下载免费PDF全文
Mitochondria from tomato fruit (Lycopersicon esculentum Mill.) exhibited a respiratory control ratio of 2.5 and an ADP:O ratio of 1.3 for succinate oxidation for 24 hours after isolation. They also showed a delay in response to the first addition of ADP. The addition of ATP and ADP before succinate eliminated the delayed response as did chelation of endogenous cations with ethylenediaminetetraacetic acid. The addition of ATP after succinate resulted in a longer delay in response than that obtained with ADP. Exogenous oxaloacetate in low concentration inhibited respiration in states 3 and 4 with succinate and resulted in delayed response to ADP. The function of adenine nucleotide during the delay in response may be to promote the metabolism of oxaloacetate or to decrease the affinity of oxaloacetate to its site of inhibition.  相似文献   

11.
Isolated plasma membranes of Micrococcus lysodeikticus were subjected to extraction with n-butanol in a two-phase system. Succinate dehydrogenase obtained in the soluble aqueous phase after high-speed centrifugation was resolved by separation on calcium phosphate gel and affinity chromatography. The affinity ligand used was oxaloacetate and elution from the column was achieved with 0.5 M succinate. In the final product there was an eleven-fold reduction in the 32P-lipid to protein ratio and a fourteen-fold increase in specific activity relative to the high speed supernatant fraction following n-butanol extraction.  相似文献   

12.
The effect of substitution of KCl for sucrose in the reaction medium on succinate oxidation and hydrogen peroxide generation was investigated in the mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.). In a sucrose-containing medium, oxidation of succinate was inhibited by oxaloacetate; this inhibition was especially pronounced upon a decrease in substrate concentration and eliminated in the presence of glutamate, which removed oxaloacetate in the course of transamination. Irrespective of succinate concentration, substitution of KCl for sucrose in the medium considerably enhanced suppression of succinate oxidation apparently as a result of slow activation of succinate dehydrogenase (SDH) by its substrate. In this case, mitochondria showed the symptoms of uncoupling, lower values of membrane potential (ΔΨ), respiratory control (RC), and ADP/O induced by electrophoretic transport of potassium via K+ channel of mitochondria. KCl-dependent suppression of succinate oxidation by taproot mitochondria was accompanied by a considerable inhibition of H2O2 production as compared with the sucrose-containing medium. These results indicate that in the presence of potassium ions, ΔΨ dissipates, suppression of succinate oxidation by oxaloacetate increases, and succinate-dependent generation of ROS in sugar beet mitochondria is inhibited. A possible physiological role of oxaloacetate-restricted SDH activity in the suppression of respiration of storage organs protecting mitochondria from oxidative stress is discussed.  相似文献   

13.
Succinate formation during incubation of isolated rat heart mitochondria with exogenous precursors, malate, alpha-ketoglutarate, oxaloacetate and L-glutamate was studied in the absence of aeration. The formation of succinate, the end product of the tricarboxylic acid cycle, occurs via two pathways: through reduction of oxaloacetate or malate and via oxiation of alpha-ketoglutarate. The highest rate of succinate synthesis was observed when mitochondria were incubated with a mixture of 5 mM L-glutamate and 10 mM oxaloacetate, i.e., when both routes were used simultaneously. The [U-13C]succinate/succinate and aspartate/succinate ratios were equal to 2, when mitochondria were incubated with 5 mM [U-13C]glutamate and 10 mM oxaloacetate. Therefore, the amount of succinate formed from [13C]alpha-ketoglutarate via transamination of [13C]glutamate with oxaloacetate exceeds twice succinate production from oxialoacetate. These data suggest that GTP formation in the succinic thiokinase reaction should exceed twice the ATP yield coupled with NADH-dependent reduction of fumarate.  相似文献   

14.
When ferricyanide is used as an artificial electron acceptor, succinate oxidation by tightly coupled liver mitochondria becomes inhibited after 1–3 min. No inhibition occurs in the presence of rotenone or glutamate establishing that oxaloacetate causes the inhibtion. Oxygen consumption by mitochondria oxidizing succinate does not become inhibited in the absence of rotenone suggesting that oxaloacetate accumulates to a greater extent when ferricyanide is added than when oxygen is the terminal acceptor. Higher levels of oxaloacetate in the ferricyanide reaction are apparently due to an increased rate of synthesis rather than a decreased rate of removal. Thus it appears that when succinate is the substrate and oxygen the terminal acceptor a control mechanism exists which blocks oxidation of malate. When ferricyanide is added as an artificial electron acceptor this control is lost and oxaloacetate accumulates to inhibit succinate oxidation.  相似文献   

15.
Succinate synthesis from exogenous malate, alpha-ketoglutarate, oxaloacetate and L-glutamate in isolated oxygen-deprived rat heart mitochondria was studied using 1H NMR. The highest rate of succinate synthesis was observed during incubation of mitochondria with a mixture of L-glutamate and oxaloacetate. When mitochondria were incubated with [U-13C] glutamate and oxaloacetate the [U-13C] succinate/succinate and aspartate/succinate ratios were equal to 2. This suggests that the succinate produced from [U-13C] alpha-keto-glutarate formed via transamination of [U-13C] glutamate with oxaloacetate by aspartate aminotransferase exceeds twofold that synthesized via oxaloacetate reduction. It may thus be expected that GTP yield in a reaction catalyzed by the succinic thiokinase will be 2 times higher that of ATP production coupled with NADH-dependent fumarate reduction.  相似文献   

16.
Summary The mitochondrial succinate dehydrogenase (E.C. 1.3.3.99) is subjected to apparently complicated regulatory mechanism. Yet, systematic analysis of the mechanism reveals the simplicity of the control. There are two stable forms of the enzyme; the non-active form stabilized as 1:1 complex with oxaloacetate and the active form stabilized by binding of activating ligands. This model quantitatively describes either the equilibrium level of active enzyme or the kinetics of activation-deactivation, in the presence of various concentrations of opposing effectors. The site where the regulatory ligands interact with the enzyme is not the substrate bonding site. The marked differences of dissociation constants of the same ligand from the two sites clearly distinguish between them.This model is fully developed for simple cases where the activating ligands are dicarboxylic acids or monovalent anions. On the other hand with activators such as ATP or CoQH2, quantitation is still not at hand. This stems from the difficulties in maintaining determined, measurable, concentrations of the ligand in equilibrium with the membranal enzyme.While in active form the histidyl flavin moity of the enzyme is reduced by physiological substrate (succinate; CoQH2). The non-active form is not reduced by these compounds, only strong reductants with low redox potential reduce the non-active enzyme. It is suggested that deactivation is a simple modulation of the redox potential of the flavin form E 0 mV in the active enzyme to E < –190 mV. The switch from one state to another might be achieved by distortion of the planar form of oxidized flavin to the bend configuration of the reduced flavin. Thus, in the active enzyme such distortion will destabilize the oxidized state of the flavin, shifting the redox potential to the higher value. The binding of oxaloacetate to the regulatory sites releases the distorting forces by relaxing the conformation of the enzyme. Consequently, the flavin assumes its planar form with the low redox potential. This assumption is supported by the spectral shifts of the flavin associated with the activation deactivation transition.The suicidal oxidation of malate to oxaloacetate, carried by the succinate dehydrogenase, plays an important role in modulating the enzyme activity in the mitochondria. This mechanism might supply oxaloacetate for deactivation in spite of the negligible concentration of free oxaloacetate in the matrix. The oxidation of malate by the enzyme is controlled by the redox potential at the immediate vicinity of the enzyme, and is imposed by the redox level of the membranal quinone.Finally, the modulation of succinate dehydrogenase activity is closely associated with regulation of NADH oxidation through the mutual inhibition between oxidases (Gutman, M. in Bioenergetics of Membranes, L. Packer et al., ed. Elsevier 1977, p. 165). The consequence of these interactions is the selection for the main electron donnor for the respiratory chain, during mixed substrate respiration, according to the metabolic demands from the mitochondria.Abbreviations SDH succinate dehydrogenase (succinate: acceptor oxidoreductase (E.C. 1.3.99.1)); - OAA oxaloacetate - Act activator - EA, EA active and non active forms of the enzyme, respectively - K'eq apparent equilibrium constant - K'd apparent dissociation constant - KAct, KOAA dissociation constant of the respective ligand from the enzyme - K'a, k'd the apparent rate constants of activation and deactivation, respectively - ka, kd the true rate constant of activation and deactivation respectively - ETP, ETPII non phosphorylating and phosphorylating submitochondrial particles - PMS phenazine methosulfate - DCIP dichlorophenol indophenol - CoQ ubiquinone - TIFA Thenotriflouvoacetone - NEM N methyl Maleimide  相似文献   

17.
M Gutman 《Biochemistry》1976,15(6):1342-1348
The activation of mitochondrial succinate dehydrogenase by various activators is a result of dissociation of oxaloacetate tightly bound to the nonactive enzyme. But, quantitative correlation between the effector concentrations and the active fraction of the enzyme was not at hand. In this study we measured the level of active succinate dehydrogenase equilibrated with a wide range of opposing effectors: oxaloacetate (1-500 muM) and activator (0.02-1.5 M NaBr). The results are compatible with a model assuming two stable forms of the enzyme: a nonactive enzyme-oxaloacetate complex and an active enzyme free of oxaloacetate. The active form is stabilized by binding two Br- and one H+. The rate of activation (ka) and exchange between enzyme bound and free oxaloacetate k(ex) were measured. Both ka and kex are hyperbolically dependent on Br- concentration but differ in magnitude and pH dependence. kex at infinite Br- concentration is pH dependent but ka is not. The two reactions, activation and exchange, also differ in their activation energy bein 32 and 21.5 kcal/mol, respectively. It is concluded that, in the course of activation, Br- interacts at two distinct steps. First to produce a ternary, nonactive [enzyme-oxaloacetate-Br-] complex. From this complex, oxaloacetate dissociates and the oxaloacetate-free enzyme assumes its active form. Finally, the active enzyme is stabilized by binding another Br-. The rate-limiting step in deactivation is binding of oxaloacetate to active enzyme. The complex formed undergoes a very rapid transformation to the stable nonactive form. This pathway, under certain conditions, can reverse its direction and contribute to the overall rate of activation. It is suggested that the equilibrium between the two stable forms of the enzyme can be reached by two parallel pathways, each contributing independently to the observed rate of activation, while the final equilibrium is determined by the free energy between the products and the reactants.  相似文献   

18.
Soluble succinate dehydrogenase prepared by butanol extraction reacts with N-ethylmaleimide according to first-order kinetics with respect to both remaining active enzyme and the inhibitor concentration. Binding of the sulfhydryl groups of the enzyme prevents its alkylation by N-ethylmaleimide and inhibition by oxaloacetate. A kinetic analysis of the inactivation of alkylating reagent in the presence of succinate or malonate suggests that N-ethylmaleimide acts as a site-directed inhibitor. The apparent first-order rate constant of alkylation increases between pH 5.8 and 7.8 indicating a pKa value for the enzyme sulfhydryl group equal to 7.0 at 22 degrees C in 50 mM Tris-sufate buffer. Certain anions (phosphate, citrate, maleate and acetate) decrease the reactivity of the enzyme towards the alkylating reagent. Succinate/phenazine methosulfate reductase activity measured in the presence of a saturating concentration of succinate shows the same pH-dependence as the alkylation rate by N-ethylmaleimide. The mechanism of the first step of succinate oxidation, including a nucleophilic attack of substrate by the active-site sulfhydryl group, is discussed.  相似文献   

19.
In the cyanobacterium Anabaena cylindrica lactate accumulated in large amounts when the cells were exposed to light. The presence or absence of oxygen, or a change in CO2 concentration did not affect the lactate accumulation. The cellular succinate level also increased in the light when CO2 was supplied at the high concentration of 1%. 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), an inhibitor of photosynthetic electron flow, inhibited the increase in the concentration of lactate and succinate. Photosynthesis is a prerequisite for the increase of these organic acids. Thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase, inhibited the increase of succinate, suggesting that the succinate is formed via fumarate by the reverse of reactions of tricarboxylic acid (TCA) cycle. Upon addition of ammonium to the cell suspension in the light under high CO2 concentration, the increases in the concentrations of lactate and succinate were inhibited while those of glutamine, glutamate and aspartate were stimulated. Ammonium apparently changed the products of metabolism of pyruvate and oxaloacetate from lactate and succinate to amino acids.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - TTFA thenoyltrifluoroacetone - PCA perchloric acid  相似文献   

20.
《Experimental mycology》1989,13(3):294-298
Succinate dehydrogenase (EC 1.3.99.1) fromDictyostelium discoideum was purified 40-fold. The pH optimum for the reaction underin vitro conditions was 7.4. Divalent cations showed no effect on the enzyme activity. Lineweaver-Burk plots of initial velocity data were linear. The Km value for succinate was calculated to be 0.22 mM. Apparent Ki values for fumarate, malonate, and oxaloacetate were 0.4, 0.02, and 0.003 mM, respectively. All three showed a competitive inhibition pattern. A comparison of the reaction ratein vivo with the calculated enzyme activity requiredin vivo (Vv) suggests that succinate dehydrogenase may be rate controlling to flux through the citric acid cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号