首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous crystallographic studies in this laboratory demonstrated that immunoglobulin light chains with the same amino acid sequence can have at least two and probably three or more conformations, depending on whether the second member of an interacting pair is a light or heavy chain. If a heavy chain is not available in the assembly medium, a second light chain plays the structural role of the heavy chain in the formation of a dimer. In the present work, the lambda-type light chains were dissociated from the heavy chains of a serum IgG1 immunoglobulin from the patient Mcg and reassembled noncovalently into a dimer. The reassembly process was completed by allowing the penultimate half-cystine residues to form an interchain disulfide bond. The covalently linked dimer was compared with the Mcg urinary Bence-Jones dimer, for which an atomic model has been fitted to a 2.3-A electron density map. The assembled dimer and the native Bence-Jones protein were indistinguishable in their chromatographic and electrophoretic properties, as well as in their activity in the binding of bis(dinitrophenyl)lysine. These results indicate that the light chains can be converted into the two types of Bence-Jones conformational isomers. The procedure was also reversed: the two Bence-Jones isomers were dissociated and reassembled as the single type of isomer associating with each of two heavy chains in the IgG1 protein. The change in activity occurring when a light chain associates with a heavy chain instead of a second light chain is illustrated by the fact that the Mcg IgG1 immunoglobulin does not bind dis(dinitrophenyl)lysine in measurable amounts.  相似文献   

2.
BY N-terminal amino-acid sequence analysis, Glenner et al.1 have shown that amyloid fibrils are very similar to the variable part of an immunoglobulin kappa light chain (Bence-Jones protein Ker) and they suggested that amyloid is constituted by immunoglobulin light chains.  相似文献   

3.
The lambda-type light chain dimer from a patient (Mcg) with multiple myeloma and amyloidosis was a pioneer protein for determining the three-dimensional structures of immunoglobulins, understanding the effects of ligand binding, and exploring the use of combinatorial methods to identify novel peptides complementary to protein active sites. Despite 30 years of intense study, there are still unanswered questions about the structure of the Mcg dimer, especially with respect to positions of hydrogen atoms and solvent molecules. In the present report, we describe two techniques that will help define the roles of solvent in ligand interactions and complex formation with this immunoglobulin fragment: (1) introduction of helium as a cryogenic agent during X-ray data collection; and (2) addition of neutron diffraction analyses. These techniques should provide improved resolution, and a more accurate structure of the Mcg dimer. Resolution enhancements of 0.5 A have been achieved in preliminary experiments with cryogenic helium, as compared with the best X-ray diffraction data obtained previously. In the near future, neutron diffraction studies should produce the first hydrogen structure for the Mcg dimer and help elucidate the ligand preferences and amyloidogenic properties of this eminently useful protein.  相似文献   

4.
Altered dimer interface decreases stability in an amyloidogenic protein   总被引:1,自引:0,他引:1  
Amyloidoses are devastating and currently incurable diseases in which the process of amyloid formation causes fatal cellular and organ damage. The molecular mechanisms underlying amyloidoses are not well known. In this study, we address the structural basis of immunoglobulin light chain amyloidosis, which results from deposition of light chains produced by clonal plasma cells. We compare light chain amyloidosis protein AL-09 to its wild-type counterpart, the kappaI O18/O8 light chain germline. Crystallographic studies indicate that both proteins form dimers. However, AL-09 has an altered dimer interface that is rotated 90 degrees from the kappaI O18/O8 dimer interface. The three non-conservative mutations in AL-09 are located within the dimer interface, consistent with their role in the decreased stability of this amyloidogenic protein. Moreover, AL-09 forms amyloid fibrils more quickly than kappaI O18/O8 in vitro. These results support the notion that the increased stability of the monomer and delayed fibril formation, together with a properly formed dimer, may be protective against amyloidogenesis. This could open a new direction into rational drug design for amyloidogenic proteins.  相似文献   

5.
Isolated constant domains from two Bence-Jones proteins VAD and BIR able to form amyloid fibrils, whereas only the first of them to keep specific ability of the intact protein. Studies of conformation and stability of these proteins by scanning microcalorimetry, circular dichroism, fluorescence and analytical centrifugation at physiological conditions (10 mM phosphate buffer, pH 7.0, 100 mM NaCl) showed that the stability of isolated pair of constant domains (C(L)-C(L)) VAD and BIR is reduced by compared with standard (nonamyloidogenic) Bence-Jones protein. However, in the intact protein BIR stability of his constant domains increases sharply, which correlated with the loss of the protein ability to form amyloid fibrils.  相似文献   

6.
The most common form of systemic amyloidosis originates from antibody light chains. The large number of amino acid variations that distinguish amyloidogenic from nonamyloidogenic light chain proteins has impeded our understanding of the structural basis of light-chain fibril formation. Moreover, even among the subset of human light chains that are amyloidogenic, many primary structure differences are found. We compared the thermodynamic stabilities of two recombinant kappa4 light-chain variable domains (V(L)s) derived from amyloidogenic light chains with a V(L) from a benign light chain. The amyloidogenic V(L)s were significantly less stable than the benign V(L). Furthermore, only the amyloidogenic V(L)s formed fibrils under native conditions in an in vitro fibril formation assay. We used site-directed mutagenesis to examine the consequences of individual amino acid substitutions found in the amyloidogenic V(L)s on stability and fibril formation capability. Both stabilizing and destabilizing mutations were found; however, only destabilizing mutations induced fibril formation in vitro. We found that fibril formation by the benign V(L) could be induced by low concentrations of a denaturant. This indicates that there are no structural or sequence-specific features of the benign V(L) that are incompatible with fibril formation, other than its greater stability. These studies demonstrate that the V(L) beta-domain structure is vulnerable to destabilizing mutations at a number of sites, including complementarity determining regions (CDRs), and that loss of variable domain stability is a major driving force in fibril formation.  相似文献   

7.
Light chain amyloidosis is an incurable protein misfolding disease where monoclonal immunoglobulin light chains misfold and deposit as amyloid fibrils, causing organ failure and death. Previously, we determined that amyloidogenic light chains AL-09 and AL-103 do not form fibrils at pH 10 (tyrosine pK(a)). There are three tyrosine residues (32, 91, and 96) clustered in the dimer interface, interacting differently in the two light chain proteins due to their two different dimer conformations. These tyrosines may be ionized at pH 10, causing repulsion and inhibiting fibril formation. Here, we characterize single and double Tyr-to-Phe mutations in AL-09 and AL-103. All AL-09 Tyr-to-Phe mutants form fibrils at pH 10, whereas none of the AL-103 mutants form fibrils at pH 10. NMR studies suggest that although both AL-09 and AL-103 present conformational heterogeneity, only AL-09 favors dimer conformations where tyrosine residues mediate crucial interactions for amyloid formation.  相似文献   

8.
The C region of human lambda L chains is specified by multiple C lambda genes of which three--C lambda 1, C lambda 2, and C lambda 3--encode for the isotypes designated Mcg+, Kern- Oz-, and Kern- Oz+, respectively. The Mcg, Kern, and Oz factors have been characterized by sequence differences involving specific C lambda amino acid residues. They have also been recognized serologically by polyclonal antisera but, with rare exception, these reagents are no longer available. We have obtained two murine anti-human lambda-chain mAb, 14G1 and 14D1, that recognize antigenic determinants specific for the C lambda isotypes Mcg and Oz, respectively. These antisera have been used to classify as Mcg+/Mcg- or Oz+/Oz- monoclonal lambda-chains (Bence Jones proteins) and intact Ig lambda proteins. There was complete concordance between the chemical and serologic assignment of lambda-chains as Mcg+/Mcg- or as Oz+/Oz-; no single protein expressed both isotypes. There was no evident association between the C region isotype Mcg or Oz and the V region subgroup of the protein tested. However, our finding that four of seven amyloid-associated lambda VI Bence Jones proteins were Oz+ suggests a predominant expression of the C lambda 3 gene product among proteins of this uncommon V lambda subgroup.  相似文献   

9.
Parmar AS  Nunes AM  Baum J  Brodsky B 《Biopolymers》2012,97(10):795-806
Type XXV collagen, or collagen‐like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro‐Hyp‐Gly)10, an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)n domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple‐helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple‐helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple‐helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly‐Xaa‐Yaa sequence and required the triple‐helix conformation. The inhibitory effect of the collagen triple‐helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 795–806, 2012.  相似文献   

10.
J Wall  M Schell  C Murphy  R Hrncic  F J Stevens  A Solomon 《Biochemistry》1999,38(42):14101-14108
Certain types of human light chains have the propensity to deposit pathologically as amyloid fibrils as evidenced by the preferential association of monoclonal lambda 6 proteins with AL amyloidosis. However, the molecular features that render such proteins amyloidogenic have not been elucidated. Based upon the demonstrated relationship between the thermodynamic stability of light chains and their propensity to aggregate in vitro, we have initiated studies where the thermodynamic properties and fibrillogenic potential of two recombinant (r) V lambda 6 molecules were compared. The first protein was generated from cDNA cloned from marrow-derived plasma cells from a patient (Wil) who had AL amyloidosis and renal amyloid deposits; the second was from a patient (Jto) with multiple myeloma in whom the lambda 6 protein was deposited not as amyloid but in the form of renal tubular casts. The thermodynamic stabilities of rV lambda 6Wil and -Jto were determined from chaotropic and thermal denaturation studies. Based upon the Delta GH2O, Delta H, Delta G25 degrees C, Tm, and Cm values, the rV lambda 6Wil was less stable than its nonamyloidogenic counterpart, rV lambda 6Jto. Measurement of fibril formation using a novel in vitro fibril forming assay demonstrated that although both rV lambda 6 proteins formed fibrils in vitro, Wil had a shorter lag time and exhibited faster kinetics under physiologic conditions. Comparative amino acid sequence analyses of these two components and other lambda 6 amyloid-associated light chains revealed that the Jto protein had certain primary structural features that we posit contributed to its increased stability and thus rendered this protein nonamyloidogenic. Our studies provide the first evidence that stabilizing interactions within the V L domain can influence the kinetics of light chain fibrillogenicity.  相似文献   

11.
H A Lashuel  C Wurth  L Woo  J W Kelly 《Biochemistry》1999,38(41):13560-13573
The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociation is lower than the barrier for wild-type transthyretin dissociation, which does not form fibrils under physiological conditions. The L55P-TTR tetramer is also very sensitive to acidic conditions, readily dissociating to form the monomeric amyloidogenic intermediate between pH 5.5-5.0 where the wild-type TTR adopts a nonamyloidogenic tetrameric structure. The formation of the L55P monomeric amyloidogenic intermediate involves subtle tertiary structural changes within the beta-sheet rich subunit as discerned from Trp fluorescence, circular dichroism analysis, and ANS binding studies. The assembly of the L55P-TTR amyloidogenic intermediate at physiological pH (pH 7.5) affords protofilaments that elongate with time. TEM studies suggest that the entropic barrier associated with filament assembly (amyloid fibril formation) is high in vitro, amyloid being defined by the laterally assembled four filament structure observed by Blake upon isolation of "fibrils" from the eye of a FAP patient. The L55P-TTR protofilaments formed in vitro bind Congo red and thioflavin T (albeit more weakly than the fibrils produced at acidic pH), suggesting that the structure observed probably represents an amyloid precursor. The structural continuum from misfolded monomer through protofilaments, filaments, and ultimately fibrils must be considered as a possible source of pathology associated with these diseases.  相似文献   

12.
Two polymorphisms of the human Ig(lambda) (IGL) locus have been described. The first polymorphism concerns a single, 2- or 3-fold amplification of 5.4 kb of DNA in the C(lambda)2-C(lambda)3 region. The second polymorphism is the Mcg(-)Ke(+)Oz(-) isotype, which has only been defined via serological analyses in Bence-Jones proteins of multiple myeloma patients and was assumed to be encoded by a polymorphic C(lambda)2 segment because of its high homology with the Mcg(-)Ke(-)Oz(-) C(lambda)2 isotype. It has been speculated that the Mcg(-)Ke(+)Oz(-) isotype might be encoded by a C(lambda) gene segment of the amplified C(lambda)2-C(lambda)3 region. We now unraveled both IGL gene polymorphisms. The amplification polymorphism appeared to result from a duplication, triplication, or quadruplication of a functional J-C(lambda)2 region and is likely to have originated from unequal crossing over of the J-C(lambda)2 and J-C(lambda)3 region via a 2.2-kb homologous repeat. The amplification polymorphism was found to result in the presence of one to five extra functional J-C(lambda)2 per genome regions, leading to decreased Ig(kappa):Ig(lambda) ratios on normal peripheral blood B cells. Via sequence analysis, we demonstrated that the Mcg(-)Ke(+)Oz(-) isotype is encoded by a polymorphic C(lambda)2 segment that differs from the normal C(lambda)2 gene segment at a single nucleotide position. This polymorphism was identified in only 1.5% (2 of 134) of individuals without J-C(lambda)2 amplification polymorphism and was not found in the J-C(lambda)2 amplification polymorphism of 44 individuals, indicating that the two IGL gene polymorphisms are not linked.  相似文献   

13.
Multiple myeloma nephropathy occurs due to the aggregate formation by monoclonal immunoglobulin light chains (Bence-Jones proteins) in kidneys of patients with multiple myeloma. The mechanism of amyloid deposit formation is still unclear. Earlier, the key role in the fibril formation has been assigned to the variable domains that acquired amyloidogenic properties as a result of somatic mutations. However, fibril formation by the Bence-Jones protein BIF was found to be the function of its constant domain. The substitution of Ser177 by Asn in the constant domain of the BIF protein is most likely an inherited than a somatic mutation. To study the role of this mutation in amyloidogenesis, the recombinant Bence-Jones protein BIF and its mutant with the N177S substitution typical for the known immunoglobulin Cκ allotypes Km1, Km1,2, and Km3 were isolated. The morphology of aggregates formed by the recombinant proteins under conditions similar to those occurring during the protein transport in bloodstream and its filtration into the renal glomerulus, in the distal tubules, and in the proximal renal tubules was analyzed by atomic force microscopy. The nature of the aggregates formed by BIF and its N177S mutant during incubation for 14 days at 37°C strongly differed and depended on both pH and the presence of a reducing agent. BIF formed fibrils at pH 7.2, 6.5, and 10.1, while the N177S mutant formed fibrils only at alkaline pH 10.1. The refolding of both proteins in the presence of 5 mM dithiothreitol resulted in the formation of branched structures.  相似文献   

14.
15.
To understand the mechanism of amyloid fibril formation of a protein, we examined wild-type and three mutant human lysozymes containing both amyloidogenic and non-amyloidogenic proteins: I56T (amyloidogenic); EAEA, which has four additional residues (Glu-Ala-Glu-Ala-) at the N-terminus located on a beta-structure; and EAEA-I56T, which is an I56T mutant of EAEA. All formed amyloid-like fibrils through an in the increase contents of alpha-helix with increasing concentration of ethanol. The order of propensity for amyloid-like fibril formation in highly concentrated ethanol solution is EAEA-I56T > EAEA > I56T > wild-type. This order is almost the reverse of the order of conformational stability of these proteins, wild-type > EAEA > I56T > EAEA-I56T. The important views in this work are as follows. (i) Artificially modified proteins formed amyloid fibrils in vitro. This means that amyloid formation is a generic property of polypeptide chains. (ii) The amyloidogenic mutation Ile56 to Thr caused the destabilization and promoted fibril formation in the wild-type and EAEA human lysozymes, indicating that instability facilitates amyloid formation. (iii) The mutant protein EAEA human lysozyme had higher propensity for fibril formation than the amyloidogenic mutant protein, indicating that amyloid formation is controlled not only by stability but also by other factors. In this case, appending polypeptide chains to a beta-structure accelerated amyloid formation.  相似文献   

16.
Light chain-associated amyloidosis is a fatal disease characterized by the aggregation and pathologic deposition of monoclonal light chain-related fragments as amyloid fibrils in organs or tissues throughout the body. Notably, it has been observed that proteins encoded by the lambda variable light chain (V(L)) gene segment 6a are invariably associated with amyloid deposition; however, the contribution of the gene to this phenomenon has not been established. In this regard, we have determined the thermodynamic stability and kinetics of in vitro fibrillogenesis of a recombinant (r) V(L) protein, designated 6aJL2, which contains the predicted sequences encoded by the 6a and JL2 germline genes. Additionally, we studied a 6a mutant (6aJL2-Arg25Gly), that is present in approximately 25% of all amyloid-associated lambda6 light chains. Remarkably, the wild-type 6aJL2 protein was more stable than were all known amyloidogenic kappa and lambda light chains for which stability parameters are available; more importantly, it was even more so (and less fibrillogenic) than the only clinically proven nonamyloidogenic lambda6 protein, Jto. Conversely, the mutated 6aJL2-R25G molecule was considerably less stable and more fibrillogenic than was the native 6aJL2. Our data indicate that the propensity of lambda6 light chains to form amyloid can not be attributed to thermodynamic instability of the germline-encoded Vlambda6 domain, but rather, is dependent on sequence alterations that render such proteins amyloidogenic.  相似文献   

17.
J N Herron  K R Ely  A B Edmundson 《Biochemistry》1985,24(14):3453-3459
The effect of high static pressures on the internal structure of the immunoglobulin light chain (Bence-Jones) dimer from the patient Mcg was assessed with measurements of intrinsic protein fluorescence polarization and intensity. Depolarization of intrinsic fluorescence was observed at relatively low pressures (less than 2 kbar), with a standard volume change of -93 mL/mol. The significant conformational changes indicated by these observations were not attributable to major protein unfolding, since pressures exceeding 2 kbar were required to alter intrinsic fluorescence emission maxima and yields. Fluorescence intensity and polarization measurements were used to investigate pressure effects on the binding of bis(8-anilino-naphthalene-1-sulfonate) (bis-ANS), rhodamine 123, and bis(N-methylacridinium nitrate) (lucigenin). Below 1.5 kbar the Mcg dimer exhibited a small decrease in affinity for bis-ANS (standard volume change approximately 5.9 mL/mol). At 3 kbar the binding activity increased by greater than 250-fold (volume change -144 mL/mol) and remained 10-fold higher than its starting value after decompression. With rhodamine 123 the binding activity showed an initial linear increase but plateaued at pressures greater than 1.5 kbar (standard volume change -23 mL/mol). These pressure effects were completely reversible. Binding activity with lucigenin increased slightly at low pressures (standard volume change -5.5 mL/mol), but the protein was partially denatured at pressures greater than 2 kbar. Taken in concert with the results of parallel binding studies in crystals of the Mcg dimer, these observations support the concept of a large malleable binding region with broad specificity for aromatic compounds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have characterized and crystallized a human lambda I light-chain dimer, Bence-Jones protein Loc, which has variable (V) region antigenic determinants characteristic for the lambda I subgroup and constant (C) region determinants of the C lambda I gene Mcg. The crystal structure was determined to 3-A resolution; the R factor is 0.27. The angle formed by the twofold axes of the V and C domains, the "elbow bend", is 97 degrees, the smallest found so far for an antibody fragment. The antigen-binding site formed by the two V domains of the Loc light chain differs significantly from those of other immunoglobulin molecules (light-chain dimers and Fab fragments) for which X-ray crystallographic data are available. Whereas, in other antibody fragments, the V domains are related by a local twofold axis, a local twofold screw axis with a translational component of 3.5 A relates the V domains in protein Loc. In contrast to the classic antigen binding "pocket" formed by V domain interactions in the previously characterized antibody structures, the V region associations in protein Loc result in a central protrusion in the binding site, with grooves on two sides of the protrusion. The structure of protein Loc indicates that immunoglobulins are physically capable of forming a more diverse spectrum of antigen-binding sites than has been heretofore apparent. Moreover, the unusual protruding nature of the binding site may be analogous to structures required for some anti-idiotypic antibodies. Further, the complementarity-determining residues form parts of two independent grooves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The biosynthesis of collagen on polysomes has been studied by using a newly devised method for obtaining polysomes in high yield from stationary-phase mouse fibroblast (line 3T6; Goldberg &, Green, 1967). These polysomes were completely disaggregated to monosomes by brief exposure to ribonuclease and they lost most of their radioactivity to the top of the sucrose gradients as a result of a 30-minute chase with unlabeled proline. After a ten-minute pulse with [3H]proline, nascent collagen peptides could be identified in these polysomes on sucrose gradients. Most of the proline residues susceptible to hydroxylation by collagen proline hydroxylase were found, in most cases, to be already hydroxylated in these nascent peptides. The nascent nature of these peptides was confirmed by the observation that treatment of the polysomes with RNase transferred the radioactive collagen peptides to the monosome area and these peptides could subsequently be removed to the soluble material at the top of the gradient upon treatment with puromycin. These findings therefore, show clearly that the hydroxylation of proline residues is occurring, in vivo under normal conditions, on nascent collagen chains. In no case was the degree of hydroxylation of the released collagen chains higher than that on the nascent collagen peptides. It seems likely, therefore, that the major site of proline hydroxylation is the nascent collagen peptide.  相似文献   

20.
Preformed amyloid fibrils accelerate conformational changes of amyloid precursor proteins and result in rapid extension of amyloid fibrils in vitro. We injected various kinds of amyloid fibrils into mice with amyloidogenic apoAII gene (Apoa2(C)). The most severe amyloid depositions were detected in the tissues of mice injected with mouse AApoAII(C) amyloid fibrils. Mild amyloid depositions were also detected in the tissues of mice that were injected with other types of fibrils, including synthetic peptides and recombinant proteins. However, no amyloid depositions were found in mice that were injected with non-amyloid fibril proteins. These results demonstrated that a common structure of amyloid fibrils could serve as a seed for amyloid fibril formation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号