首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The ascidians, the so-called sea squirts, accumulate high levels of vanadium, a transition metal. Since Henze first observed this physiologically unusual phenomenon about one hundred years ago, it has attracted interdisciplinary attention from chemists, physiologists, and biochemists. The maximum concentration of vanadium in ascidians can reach 350 mM, and most of the vanadium ions are stored in the + 3 oxidation state in the vacuoles of vanadium-accumulating blood cells known as vanadocytes. Many proteins involved in the accumulation and reduction of vanadium in the vanadocytes, blood plasma, and digestive tract have been identified. However, the process by which vanadium is taken in prior to its accumulation in vanadocytes has not been elucidated. In the present study, a novel vanadium-binding protein, designated VBP-129, was identified from blood plasma of the vanadium-rich ascidian Ascidia sydneiensis samea. Although VBP-129 mRNA was transcribed in all A. sydneiensis samea tissues examined, the VBP-129 protein was exclusively localized in blood plasma and muscle cells of this ascidian. It bound not only to VO2+ but also to Fe3+, Co2+, Cu2+, and Zn2+; on the other hand, a truncated form of VBP-129, designated VBP-88, bound only to Co2+, Cu2+ and Zn2+. In a pull-down assay, an interaction between VanabinP and VBP-129 occurred both in the presence and the absence of VO2+. These results suggest that VBP-129 and VanabinP function cooperatively as metallochaperones in blood plasma.  相似文献   

2.
Some species of the family Ascidiidae accumulate vanadium in concentrations in excess of 350 mM, which is about 10 (7)-fold higher than the concentration of vanadium in seawater. In these species, signet ring cells with a single large vacuole in which vanadium ions are contained function as vanadium-accumulating cells. These have been termed vanadocytes. We recently isolated five vanadium-binding proteins, which we named Vanabin1, Vanabin2, Vanabin3, Vanabin4, and VanabinP, from vanadocytes of the vanadium-rich ascidian Ascidia sydneiensis samea. In this study, we analyzed localization of the Vanabins in the blood cells of A. sydneiensis samea using monoclonal antibodies and confocal microscopy. The Vanabin1 and Vanabin2 proteins were found in the cytoplasm and/or in some organelles of vanadocytes. Vanabin3 was also detected in the cytoplasm, while Vanabin4 was found exclusively in the cytoplasmic membrane.  相似文献   

3.
The blood cells of ascidians accumulate extremely high levels of the transition metal vanadium. We previously isolated four vanadium-binding proteins (Vanabins 1-4) and a homologous protein (VanabinP) from the vanadium-rich ascidian Ascidia sydneiensis samea. In the present study, we identified cDNAs encoding five different Vanabin2-related proteins in A. sydneiensis samea blood cells. It was notable that the sequences of the encoded proteins vary from that of Vanabin2 at up to 14 specific positions, while both the polypeptide length and the 18 cysteine residues were completely conserved. The most divergent protein, named 14MT, differed from Vanabin2 at all 14 positions. Using immobilized metal-ion affinity chromatography, we found that Vanabin2 and 14MT have the same metal-ion selectivity, but the overall affinity of 14MT for VO(2+) is higher than that of Vanabin2. Binding number for VO(2+) ions was the same between Vanabin2 and 14MT as assessed by gel filtration. These results suggested that sequence variations were under strict evolutionary constraints and high-affinity binding sites for VO(2+) are conserved among Vanabin2 variants.  相似文献   

4.
Some ascidians accumulate high levels of the transition metal vanadium in their blood cells. The process of vanadium accumulation has not yet been elucidated. In this report, we describe the isolation and cDNA cloning of a novel vanadium-binding protein, designated as VanabinP, from the blood plasma of the vanadium-rich ascidian, Ascidia sydneiensis samea. The predicted amino acid sequence of VanabinP was highly conserved and similar to those of other Vanabins. The N-terminus of the mature form of VanabinP was rich in basic amino acid residues. VanabinP cDNA was originally isolated from blood cells, as were the other four Vanabins. However, Western blot analysis revealed that the VanabinP protein was localized to the blood plasma and was not detectable in blood cells. RT-PCR analysis and in situ hybridization indicated that the VanabinP gene was transcribed in some cell types localized to peripheral connective tissues of the alimentary canal, muscle, blood cells, and a portion of the branchial sac. Recombinant VanabinP bound a maximum of 13 vanadium(IV) ions per molecule with a Kd of 2.8 x 10(-5) M. These results suggest that VanabinP is produced in several types of cell, including blood cells, and is immediately secreted into the blood plasma where it functions as a vanadium(IV) carrier.  相似文献   

5.
Ascidians, so-called sea squirts, can accumulate high levels of vanadium in the vacuoles of signet ring cells, which are one type of ascidian blood cell and are also called vanadocytes. In addition to containing high concentrations of vanadium in the +3 oxidation state, the proton concentrations in vanadocyte vacuoles are extremely high. In order to elucidate the entire mechanism of the accumulation and reduction of vanadium by ascidian vanadocytes, it is necessary to clarify the participation of anions, which might be involved as counter ions in the active accumulation of both vanadium and protons. We examined the chloride channel, since chloride ions are necessary for the acidification of intracellular vesicles and coexist with H(+)-ATPase. We cloned a cDNA encoding a chloride channel from blood cells of a vanadium-rich ascidian, Ascidia sydneiensis samea. It encoded a 787-amino-acid protein, which showed striking similarity to mammalian ClC3/4/5-type chloride channels. Using a whole-mount in situ hybridization method that we developed for ascidian blood cells, the chloride channel was revealed to be transcribed in vanadocytes, suggesting its participation in the process of vanadium accumulation.  相似文献   

6.
Some ascidians accumulate vanadium in vanadocytes, which are vanadium-containing blood cells, at high levels and with high selectivity. However, the mechanism and physiological significance of vanadium accumulation remain unknown. In this study, we isolated novel proteins with a striking homology to glutathione transferases (GSTs), designated AsGST-I and AsGST-II, from the digestive system of the vanadium-accumulating ascidian Ascidia sydneiensis samea, in which the digestive system is thought to be involved in vanadium uptake. Analysis of recombinant AsGST-I confirmed that AsGST-I has GST activity and forms a dimer, as do other GSTs. In addition, AsGST-I was revealed to have vanadium-binding activity, which has never been reported for GSTs isolated from other organisms. AsGST-I bound about 16 vanadium atoms as either V(IV) or V(V) per dimer, and the apparent dissociation constants for V(IV) and V(V) were 1.8 x 10(-4) M and 1.2 x 10(-4) M, respectively. Western blot analysis revealed that AsGSTs were expressed in the digestive system at exceptionally high levels, although they were localized in almost all organs and tissues examined. Considering these results, we postulate that AsGSTs play important roles in vanadium accumulation in the ascidian digestive system.  相似文献   

7.
Some ascidians (sea squirts) accumulate the transitional metal vanadium in their blood cells at concentrations of up to 350 mM, about 10(7) times its concentration found in seawater. There are approximately 10 different types of blood cell in ascidians. The identity of the true vanadium-containing blood cell (vanadocyte) is controversial and little is known about the subcellular distribution of vanadium. A scanning x-ray microscope installed at the ID21 beamline of the European Synchroton Radiation Facility to visualize vanadium in ascidian blood cells. Without fixation, freezing or staining realized the visualization of vanadium localized in living signet ring cells and vacuolated amoebocytes of two vanadium-rich ascidian species, Phallusia mammillata and Ascidia sydneiensis samea. A combination of transmission and fluorescence images of signet ring cells suggested that in both species the vacuoles contain vanadium.  相似文献   

8.
Several species of ascidians, the so-called tunicates, accumulate extremely high levels of vanadium ions in their blood cells. We previously identified a family of vanadium-binding proteins, named Vanabins, from blood cells and blood plasma of a vanadium-rich ascidian, Ascidia sydneiensis samea. The 3-dimensional structure of Vanabin2, the predominant vanadium-binding protein in blood cells, has been revealed, and the vanadium-binding properties of Vanabin2 have been studied in detail. Here, we used Far Western blotting to identify a novel protein that interacts with Vanabin2 from a blood cell cDNA library. The protein, named Vanabin-interacting protein 1 (VIP1), was localized in the cytoplasm of signet ring cells and giant cells. Using a two-hybrid method, we revealed that VIP1 interacted with Vanabins 1, 2, 3, and 4 but not with Vanabin P. The N-terminal domain of VIP1 was shown to be important for the interaction. Further, Vanabin1 was found to interact with all of the other Vanabins. These results suggest that VIP1 and Vanabin1 act as metal chaperones or target proteins in vanadocytes.  相似文献   

9.
Some species in the family Ascidiidae accumulate vanadium at concentrations in excess of 350 mM, which corresponds to about 10(7) times that found in seawater. The vanadium ions are stored in vacuoles located within vanadium-containing blood cells, vanadocytes. To investigate the phenomenon, an expressed sequence tag analysis (EST) of a cDNA library of Ascidia sydneiensis samea blood cells was carried out. Three hundred clones were obtained and sequenced by EST analysis. A similarity search revealed that 158 of the clones (52.7%) were known genes, and 142 of the clones (47.3%) did not have any similarity to genes registered in the SwissProt database. According to the functions of their genes the identified EST clones were categorized into eight types of clones; these consisted of genes; metal-related proteins (29 clones), signal transduction (22 clones), protein synthesis (17 clones), nuclear proteins (17 clones), cytoskeleton and motility (14 clones), energy conversion (3 clones), hypothetical proteins (11 clones), and others (45 clones). The ferritin homologue has a high degree of similarity to that of mammals; the iron-binding sites of ferritin are well conserved including His-118 which is important for capturing Fe(2+), also works as a ligand for VO(2+).  相似文献   

10.
11.
Some species in the family Ascidiidae accumulate vanadium at concentrations in excess of 350 mM, which corresponds to about 107 times higher than that in seawater. In these species signet ring cells, with a single huge vacuole in which vanadium ion is contained, function as vanadium-accumulating cells, vanadocytes. To investigate the mechanism underlying this phenomenon, we performed an expressed sequence tag (EST) analysis of a complementary DNA library from vanadocytes of a vanadium-rich ascidian, Ascidia sydneiensis samea. We determined the nucleotide sequences of 1000 ESTs and performed a BLAST analysis against the SwissProt database. We found 93 clones of metal-related gene homologues, including the ferritin heavy subunit, hemocyanin, and metallothionein. Two ESTs, in particular, exhibited significant similarity to vanabins that have been extracted from A. sydneiensis samea blood cells as low molecular weight vanadium-binding proteins. We have named the genes encoding these ESTs vanabin3 and vanabin4. Immobilized metal ion affinity chromatography revealed that these novel vanabin homologues bind vanadium(IV) ions.  相似文献   

12.
Since the beginning of the last century, it has been known that ascidians accumulate high levels of a transition metal, vanadium, in their blood cells, although the mechanism for this curious biological function remains unknown. Recently, we identified three vanadium-binding proteins (vanabins), previously denoted as vanadium-associated proteins (VAPs) [Zool. Sci. 14 (1997) 37], from the cytoplasm fraction of vanadium-containing blood cells (vanadocytes) of the vanadium-rich ascidian Ascidia sydneiensis samea. Here, we describe the cloning, expression, and analysis of the metal-binding ability of vanabins. Recombinant proteins of two independent but related vanabins, vanabin1 and vanabin2, bound to 10 and 20 vanadium(IV) ions with dissociation constants of 2.1x10(-5) and 2.3x10(-5) M, respectively. The binding of vanadium(IV) to these vanabins was inhibited by the addition of copper(II) ions, but not by magnesium(II) or molybdate(VI) ions. Vanabins are the first proteins reported to show specific binding to vanadium ions; this should provide a clue to resolving the problem regarding the selective accumulation of vanadium in ascidians.  相似文献   

13.
A vanadium-accumulating ascidian, Ascidia sydneiensis samea, expresses vacuolar-type H+-ATPases (V-ATPases) on the vacuole membrane of the vanadium-containing blood cells known as vanadocytes. Previously, we showed that the contents of their vacuoles are extremely acidic and that a V-ATPase-specific inhibitor, bafilomycin A1, neutralized the contents of the vacuoles. To understand the function of V-ATPase in vanadocytes, we isolated complementary DNA encoding subunit C of V-ATPase from vanadocytes because this subunit has been known to be responsible for the assembly of V-ATPases and to regulate the ATPase activity of V-ATPases. The cloned cDNA was 1443 nucleotides in length, and encoded a putative 384 amino acid protein. By expressing the ascidian cDNA for subunit C under the control of a galactose-inducible promoter, the pH-sensitive phenotype of the corresponding vma5 mutant of a budding yeast was rescued. This result showed that the ascidian cDNA for subunit C functioned in yeast cells. Received August 11, 2000; accepted March 5, 2001.  相似文献   

14.

Background

Several species of ascidians accumulate extremely high levels of vanadium ions in the vacuoles of their blood cells (vanadocytes). The vacuoles of vanadocytes also contain many protons and sulfate ions. To maintain the concentration of sulfate ions, an active transporter must exist in the blood cells, but no such transporter has been reported in vanadium-accumulating ascidians.

Methods

We determined the concentration of vanadium and sulfate ions in the blood cells (except for the giant cells) of Ascidia sydneiensis samea. We cloned cDNA for an Slc13-type sulfate transporter, AsSUL1, expressed in the vanadocytes of A. sydneiensis samea. The synthetic mRNA of AsSUL1 was introduced into Xenopus oocytes, and its ability to transport sulfate ions was analyzed.

Results

The concentrations of vanadium and sulfate ions in the blood cells (except for the giant cells) were 38 mM and 86 mM, respectively. The concentration of sulfate ions in the blood plasma was 25 mM. The transport activity of AsSUL1 was dependent on sodium ions, and its maximum velocity and apparent affinity were 2500 pmol/oocyte/h and 1.75 mM, respectively.

General significance

This could account for active uptake of sulfate ions from blood plasma where sulfate concentration is 25 mM, as determined in this study.  相似文献   

15.
Several species of ascidians, the so-called tunicates, accumulate extremely high levels of vanadium ions in their blood cells. We previously identified a family of vanadium-binding proteins, named Vanabins, from blood cells and blood plasma of a vanadium-rich ascidian, Ascidia sydneiensis samea. The 3-dimensional structure of Vanabin2, the predominant vanadium-binding protein in blood cells, has been revealed, and the vanadium-binding properties of Vanabin2 have been studied in detail. Here, we used Far Western blotting to identify a novel protein that interacts with Vanabin2 from a blood cell cDNA library. The protein, named Vanabin-interacting protein 1 (VIP1), was localized in the cytoplasm of signet ring cells and giant cells. Using a two-hybrid method, we revealed that VIP1 interacted with Vanabins 1, 2, 3, and 4 but not with Vanabin P. The N-terminal domain of VIP1 was shown to be important for the interaction. Further, Vanabin1 was found to interact with all of the other Vanabins. These results suggest that VIP1 and Vanabin1 act as metal chaperones or target proteins in vanadocytes.  相似文献   

16.
Vanadium K-edge X-ray absorption spectroscopy (XAS) has been used to track the uptake and fate of VO(2+) ion in blood cells from Ascidia ceratodes, following exposure to dithiothreitol (DTT) or to DTT plus VO(2+). The full range of endogenous vanadium was queried by fitting the XAS of blood cells with the XAS spectra of model vanadium complexes. In cells exposed only to DTT, approximately 0.4% of a new V(III) species was found in a site similar to Na[V(edta)(H(2)O)]. With exposure to DTT and VO(2+), average intracellular [VO(aq)](2+) increased from 3% to 5%, and 6% of a new complexed form of vanadyl ion appeared evidencing a ligand array similar to [VO(edta)](2-). At the same time, the relative ratio of blood cell [V(H(2)O)(6)](3+) increased at the expense of [V(H(2)O)(5)(SO(4))](+) in a manner consistent with a significant increase in endogenous acidity. In new UV/Visible experiments, VO(2+) could be reduced to 7-coordinate [V(nta)(H(2)O)(3)] or [V(nta)(ida)](2-) with cysteine methyl ester in pH 6.5 solution. Ascorbate reduced [VO(edta)](2-) to 7-coordinate [V(edta)(H(2)O)](-), while [VO(trdta)](2-) was unreactive. These results corroborate the finding that the reductive EMF of VO(2+) is increased by the availability of a 7-coordinate V(III) product. Finally, a new and complete hypothesis is proposed for an ascidian vanadate reductase. The structure of the enzyme active site, the vanadate-vanadyl-vanadic reduction mechanism, the cellular locale, and elements of the regulatory machinery governing the biological reduction of vanadate and vanadyl ion by ascidians are all predicted. Together these constitute the new field of vanadium redox enzymology.  相似文献   

17.
Ascidians are sessile marine animals known to accumulate high levels of vanadium selectively in vanadium-containing blood cells (vanadocytes). Almost all the vanadium accumulated in the vacuoles of vanadocytes is reduced to the +3 oxidation state via the +4 oxidation state, although vanadium is dissolved in the +5 oxidation state in sea water. Some of the reducing agents that participate in the reduction have been proposed. By chemical study, vanadium in the +5 oxidation state was reported to be reduced to the +4 oxidation state in the presence of NADPH. The present study revealed the existence of glucose-6-phosphodehydrogenase (G6PDH), the first enzyme to produce NADPH in the pentose phosphate pathway, in vanadocytes of a vanadium-rich ascidian. The results suggested that G6PDH conjugates the reduction of vanadium from the +5 through to the +4 oxidation state in vanadocytes of ascidians.  相似文献   

18.
Glutathione transferases (GSTs) are multifunctional enzymes found in many organisms. We recently identified vanadium-binding GSTs, designated AsGSTs, from the vanadium-rich ascidian, Ascidia sydneiensis samea. In this study, the metal-selectivity of AsGST-I was investigated. Immobilized metal ion affinity chromatography (IMAC) analysis revealed that AsGST-I binds to V(IV), Fe(III), and Cu(II) with high affinity in the following order Cu(II)>V(IV)>Fe(III), and to Co(II), Ni(II), and Zn(II) with low affinity. The GST activity of AsGST-I was inhibited dose-dependently by not V(IV) but Cu(II). A competition experiment demonstrated that the binding of V(IV) to AsGST-I was not inhibited by Cu(II). These results suggest that AsGST-I has high V(IV)-selectivity, which can confer the specific vanadium accumulation of ascidians. Because there are few reports on the metal-binding ability of GSTs, we performed the same analysis on SjGST (GST from the schistosome, Schistosoma japonicum). SjGST also demonstrated metal-binding ability although the binding pattern differed from that of AsGST-I. The GST activity of SjGST was inhibited by Cu(II) only, as that of AsGST-I. Our results indicate a possibility that metal-binding abilities of GSTs are conserved among organisms, at least animals, which is suggestive of a new role for these enzymes in metal homeostasis or detoxification.  相似文献   

19.
Some ascidians accumulate vanadium in vanadocytes, which are vanadium-containing blood cells, at high levels and with high selectivity. However, the mechanism and physiological significance of vanadium accumulation remain unknown. In this study, we isolated novel proteins with a striking homology to glutathione transferases (GSTs), designated AsGST-I and AsGST-II, from the digestive system of the vanadium-accumulating ascidian Ascidia sydneiensis samea, in which the digestive system is thought to be involved in vanadium uptake. Analysis of recombinant AsGST-I confirmed that AsGST-I has GST activity and forms a dimer, as do other GSTs. In addition, AsGST-I was revealed to have vanadium-binding activity, which has never been reported for GSTs isolated from other organisms. AsGST-I bound about 16 vanadium atoms as either V(IV) or V(V) per dimer, and the apparent dissociation constants for V(IV) and V(V) were 1.8 × 10−4 M and 1.2 × 10−4 M, respectively. Western blot analysis revealed that AsGSTs were expressed in the digestive system at exceptionally high levels, although they were localized in almost all organs and tissues examined. Considering these results, we postulate that AsGSTs play important roles in vanadium accumulation in the ascidian digestive system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号