首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behaviour of Listeria monocytogenes under combined chilling processes   总被引:2,自引:0,他引:2  
The behaviour of Listeria monocytogenes under chilling processes was investigated. Growth kinetics were measured at 7 degrees C in TSBYE culture medium as a function of pH (7.2 and 6.2), pre-incubation temperatures (4 or 7 degrees C), cooling (0.05 or 0.1 degree C min-1) and freezing (0 and -5 degrees C) treatments. Growth curves generated were fitted by Gompertz and Baranyi functions. The Baranyi function gave better parameter estimation values than the Gompertz equation which over-estimated the specific growth rate values. Listeria monocytogenes grew at 7 degrees C without a lag phase, except when the sub-culture was performed at 37 degrees C, whereas the specific growth rate was affected by the chilling processes. In fact, L. monocytogenes grew slightly faster at 7 degrees C when a 4 degrees C pre-incubation treatment was applied than with a 7 degrees C pre-incubation treatment. These results suggest that to mimic the processes of contamination in industry, predictive microbiology studies with L. monocytogenes should be performed with organisms cultured at low temperatures.  相似文献   

2.
Randomly proliferating 3Y1tsD123 cells are arrested in G1 phase within 24 h after a shift up to 39.8 degrees C (temperature arrest), yet the density-arrested cells (prepared at 33.8 degrees C) enter S phase at 39.8 degrees C with serum stimulation, with or without preexposure to 39.8 degrees C for 24 h (Zaitsu and Kimura 1984a). When the density-arrested 3Y1tsD123 cells were preexposed to 39.8 degrees C for 96 h, they lost the ability to enter S phase at 39.8 degrees C by serum stimulation and required a longer lag time to enter S phase at 33.8 degrees C by serum stimulation than did the cells not preexposed to 39.8 degrees C. Simian virus 40 induced cellular DNA synthesis at 39.8 degrees C in the density-arrested 3Y1tsD123 preexposed to 39.8 degrees C for 96 h. In the absence of serum after a shift down to 33.8 degrees C, the temperature-arrested 3Y1tsD123 cells entered S phase and then divided once. We postulate from these results that (1) the ts defect in 3Y1tsD123 is involved in a serum-independent process. Once this process is accomplished, its accomplishment is invalidated slowly with preexposure to 39.8 degrees C. This and the serum-dependent processes occur in parallel but not necessarily simultaneously. The accomplishment of both (all) processes is required for the initiation of S phase. The density-arrested 3Y1tsD123 cells have accomplished the serum-independent process related to the ts defect, but have not accomplished serum-dependent processes. In case of the temperature-arrested 3Y1tsD123 cells, the reverse holds true. The lag time for entry into S phase depends on the preparedness for the initiation of DNA synthesis (on the extent of accomplishment of each of all processes required for entry into S phase). (2) To induce cellular DNA synthesis, simian virus 40 stimulates directly the serum-independent process. However, we do not rule out the possibility that simian virus 40 stimulates serum-dependent processes simultaneously.  相似文献   

3.
This study evaluated the effects of different temperatures on the histological process of sex differentiation in the pejerrey Odontesthes bonariensis, a fish with marked temperature-dependent sex determination (TSD), at feminizing, neutral, and masculinizing temperatures. Fish reared at three temperatures (17 degrees C, 24 degrees C, and 29 degrees C) from hatching were sampled weekly until 11 weeks and their gonads were examined by histology. The percentages of females at 17 degrees C, 24 degrees C, and 29 degrees C were 100%, 73%, and 0%, respectively. Sex differentiation occurred earlier and at a smaller body size at higher temperatures in both sexes. The first signs of ovarian differentiation were observed at 4 and 7 weeks at 24 degrees C and 17 degrees C, respectively, and those of testicular differentiation at 4 and 7 weeks at 29 degrees C and 24 degrees C, respectively. Body or gonadal growth rates before sex differentiation were not proportional to temperature and showed no sexual dimorphism at 24 degrees C, where both sexes were present. Thus, differential growth rate is probably not a factor in TSD or histological sex differentiation in pejerrey. Blood vessels were formed before sex differentiation in both sexes and at all temperatures, and may be important for sex differentiation. No signs of intersexuality were found in any of the groups, and this characterizes pejerrey as the differentiated type of gonochorist even at feminizing and masculinizing temperatures. Ovaries were formed by the same histological processes at feminizing (17 degrees C) and neutral (24 degrees C) temperatures and without any pathological features such as germ cell degeneration. The process of testicular formation was generally similar at 24 degrees C and 29 degrees C, but some fish at 29 degrees C had widespread germ cell degeneration before sex differentiation. This suggests that pathological processes leading to germ cell death, such as heat-induced dysfunction of the supporting somatic cells, could be involved in masculinization of the genetic females at high temperatures.  相似文献   

4.
The heterophagic pathway of the digestive-lysosomal system in axenically grown Paramecium caudatum is divisible into vacuole formation, vacuole acidification-condensation, lysosomal fusion-digestion and defecation. These four processes can be separated in time, thus permitting the study of the effects of temperature on each process. The optimal growth temperature for this cell was 27 degrees C. The rate of digestive vacuole (DV) formation at varying temperatures was represented by a skewed bell-shaped curve having an optimum between 28 and 30 degrees C. The time course for the acidification-condensation step was lengthened below 26 degrees C, but was not accelerated above this temperature. The rate but not the extent of vacuole condensation was decreased at 19 and 22 degrees C. Temperature increase above 22 degrees C shortened, slightly, the duration of the lysosomal fusion-digestion process, whereas below 22 degrees C small temperature decreases greatly extended this period. Within a given experiment the rates of defecation were proportional to temperatures above 17 degrees C. However, these rates varied widely among different experiments. Interestingly, the activation energies for both the formation and defecation processes averaged 19 kcal/mol. Furthermore, Paramecium appeared to readily adapt to environmental temperature changes, since the length of the processing periods and the rates of defecation were similar in cells with or without a 24 h acclimation. These results indicated that the four processes in the digestive cycle in P. caudatum are distinct but each is energy-dependent.  相似文献   

5.
Rapid cold-hardening (RCH) and cold acclimation (ACC) were examined in eggs of the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). When eggs incubated at 25 degrees C were transferred directly to conditions of -22 degrees C for 2h, less than 30% survived, whereas exposure to 0 degrees C for 4h prior to transfer to -22 degrees C increased survival to nearly 60%. The rapidly enhanced cold tolerance (RCH) was transient and lost rapidly after 1h at 25 degrees C. Incubation at 15.5 degrees C for 9 days (ACC) also enhanced cold tolerance. Comparison of the cold tolerance of non-treated eggs and eggs pre-treated to give RCH, ACC, or ACC+RCH allowed the relationship between the two hardening processes to be determined. At a mild subzero temperature (-10 degrees C) an RCH effect was not detected, whereas only RCH is effective at the severest subzero temperature just above the SCP (-26 degrees C). At intermediate temperatures (-16, -22 and -25 degrees C), ACC and RCH enhanced survival in combination. Therefore, the two hardening processes have different physiological bases but operate concomitantly over a wide temperature range.  相似文献   

6.
Isothermal dielectric loss spectra of neutralized and nonneutralized chitosan were acquired in successive runs from -130 degrees C up to increasing final temperatures, in a frequency range between 20 Hz and 1 MHz. Essentially, three relaxation processes were detected in the temperature range covered: (i) a beta-wet process, detected when the sample has a higher water content that vanishes after heating to 150 degrees C; (ii) a beta process, which is located at temperatures below 0 degrees C, becoming better defined and maintaining its location after annealing at 150 degrees C independently of the protonation state of the amino side group; and (iii) a sigma process that deviates to higher temperatures with drying, being more mobile in the nonneutralized form. Moreover, in dried neutralized chitosan, a fourth process was detected in the low frequency side of the secondary beta process that diminishes after annealing. Whether this process is a distinct relaxation of the dried polymer or a deviated beta-wet process due to the loss of water residues achieved by annealing is not straightforward. Only beta and sigma processes persist after annealing at 150 degrees C. The changes in molecular mobility upon drying of these two relaxation processes were evaluated.  相似文献   

7.
Hereditary hemolytic anemias originate mainly from defects in hemoglobin and plasma membrane proteins. Here, we propose a new method, thermal analysis of impedance, sensitive to membrane defects. It detects three processes in erythrocyte membrane; fall in membrane capacity at 49.5 degrees C and activation of passive PO(4)(2+) permeability at 37 degrees C and inorganic ions at 61.5 degrees C. The denaturation of spectrin is involved in the first process whilst the anion channel is involved in latter processes. Using this method three persons with xerocytosis were found whereby the fall in membrane capacity and spherization of erythrocytes were both postponed (53 degrees C) compared to control (49.5 degrees C). In contrast to control cells, strong activation of passive permeability for Cl(-) at 37 degrees C and sucrose at 61 degrees C were detected that were both eliminated by pre-inhibition of the anion channel with 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS). In addition, erythrocytes from 15 patients with various forms of anemia were studied in intact state and after refreshment. The results were compared with the data of clinical laboratory and osmotic fragility test. The final conclusion is that this method detects membrane defects with altered spectrin and anion channel syndrome (hereditary xerocytosis, spherocytosis, poikilocytosis and pyropoikilocytosis, elliptocytosis and stomatocytosis) and, after refreshment, helps differentiate them from the anemia with hemoglobinopathy.  相似文献   

8.
Death and injury of Staphytococcus aureus during thermal treatment of milk   总被引:2,自引:0,他引:2  
Staphylococcus aureus isolated from milk and grown in milk was heated in milk. The phenomena of death as well as injury was investigated in the range of 50 to 75 degrees C. The D60 value (decimal reduction time on salt-free medium) was 0.87 min, the D'60 value (decimal reduction time in salt-containing medium) was 0.62 min. Cultures were injured as soon as heating started. This initial thermal shock increased with increasing temperature. At 50-60 degrees C injury was more rapid than death. At greater than 60 degrees C death became faster than injury and the two processes coincided at 70 degrees C. The Z value was 9.46 degrees C and the Z' value was 9.93 degrees C.  相似文献   

9.
Q Wu  D L Bedard    J Wiegel 《Applied microbiology》1997,63(12):4818-4825
Reductive dechlorination of the Aroclor 1260 residue in Woods Pond (Lenox, Mass.) sediment samples was investigated for a year at incubation temperatures from 4 to 66 degrees C. Sediment slurries were incubated anaerobically with and without 2,3,4,6-tetrachlorobiphenyl (2346-CB; 350 microM) as a primer for dechlorination of the Aroclor 1260 residue. Dechlorination of the Aroclor residue occurred only in live samples primed with 2346-CB and only at 8 to 34 degrees C and 50 to 60 degrees C. The extent and pattern of polychlorinated biphenyl (PCB) dechlorination were temperature dependent. At 8 to 34 degrees C, the dechlorination resulted in 28 to 65% decreases of the hexathrough nonachlorobiphenyls and corresponding increases in the tri- and tetrachlorobiphenyls. At 12 to 30 degrees C, 30 to 40% of the hexa- through nonachlorobiphenyls were dechlorinated in just 3 months. The optimal temperature for overall chlorine removal was 20 to 27 degrees C. We observed four different microbial dechlorination processes with different but partially overlapping temperature ranges, i.e., Process N (flanked meta dechlorination) at 8 to 30 degrees C, Process P (flanked para dechlorination) at 12 to 34 degrees C, Process LP (unflanked para dechlorination) at 18 to 30 degrees C, and Process T (a very restricted meta dechlorination of specific hepta- and octachlorobiphenyls) at 50 to 60 degrees C. These temperature ranges should aid in the development of strategies for the enrichment and isolation of the microorganisms responsible for each dechlorination process. The incubation temperature determined the relative dominance of the four PCB dechlorination processes and the extent and products of dechlorination. Hence, understanding the effects of temperature on PCB dechlorination at contaminated sites should assist in predicting the environmental fate of PCBs or planning bioremediation strategies at those sites.  相似文献   

10.
Growth rate, sugar transport, and amino acid transport of yeast cells grown at 12 degrees C were inhibited by cool-white fluorescent light. At light intensities below 1,250 lx, growth and membrane transport were only slightly inhibited. Above 1,250 lx, there was increasing inhibition of both processes. Transport of histidine was completely inhibited after 3 to 5 days in cultures grown at 12 degrees C under 3,500-lx illumination. Cells grown at 20 degrees C were not inhibited by light intensities that caused complete loss of viability and membrane transport activity in cells grown at 12 degrees C.  相似文献   

11.
The intracellular growth of bacteriophages T3, T4 and phi X174 was studied in Escherichia coli cells frozen to -196 degrees C and cooled to 0 degree C at various intervals from the instant of phage infection. The processes of biosynthesis were delayed and the latent period was longer in the growth of cells frozen to -196 degrees C. The levels of RNA and protein biosynthesis as well as the yield of phages decreased when cells were frozen at a later stage of the phage growth. No changes were found in the intracellular growth processes of the phages during the subsequent cultivation of the bacterium when it was infected and then cooled to 0 degree C.  相似文献   

12.
Heterologous protein secretion involves the coupled processes of protein synthesis, protein folding, and secretory trafficking. A more complete understanding of how these processes interrelate could help direct optimization of secretion systems. Here we provide a detailed study regarding the dynamics of heterologous protein secretion from yeast in terms of intracellular protein levels, secreted protein levels, and unfolded protein response (UPR). Three different protein expression induction temperatures (20, 30, and 37 degrees C) were investigated as a means to modulate expression rates and thus cellular responses. Inducing at 20 degrees C yielded the slowest initial secretion rate, but the highest absolute level of product. Correspondingly, the level and the rate of both intracellular protein accumulation and unfolded protein response (UPR) activation were also the lowest at 20 degrees C. In addition, secretion ceased after approximately 22 h at 30 and 37 degrees C, respectively, while it was continuous until nutrient depletion at 20 degrees C. Maxima in secretion levels were observed that were a result of the additive effects of secretion cessation and post-secretory protein loss. The post-secretory loss of protein did not appear to result from solution phase proteolysis or aggregation, but required the presence of yeast cells. Refeeding of both yeast nitrogen base and casamino acids successfully prevented the post-secretory loss of protein at both high (37 degrees C) and low (20 degrees C) temperatures, and further increased secretion levels 1.5-fold at 20 degrees C where the secretory pathway was still functioning. Taken together, these findings suggest that there exists an appropriate balance between protein synthesis, processing and secretion rates required for secretion optimization.  相似文献   

13.
The feasibility of thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 degrees C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO4(2-)=0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65-75 degrees C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 degrees C, whereas strong competition between SRB and MPA was observed in these reactors at 55 degrees C. A short-term (5 days) temperature increase from 55 to 65 degrees C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 degrees C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 degrees C, with sulfide as the sole mineralization product of methanol degradation at that temperature.  相似文献   

14.
Lee M  Hidaka T  Tsuno H 《Bioresource technology》2008,99(15):6852-6860
The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 43.1% of COD solubilization was achieved at 70 degrees C, while it was about 21% at 80 degrees C. The average protein solubilization reached to 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% in average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. The upper temperature limits for growth of microbes were secondly observed and shown to be 73 degrees C for acetate oxidizers, 65 degrees C for propionate oxidizers, 70 degrees C for iso-butyrate oxidizers, 80 degrees C for lactate oxidizers and 65 degrees C for protein degrading bacteria in the methane fermenter. As well as, microbes affiliated with methanogens dominated the population below the 65 degrees C, while those affiliated with acidogens were predominant over the 73 degrees C. These results indicated that the hyperthermophilic processes have considerable benefits to treat wastewater or waste containing high concentration of protein.  相似文献   

15.
The effects of calcium and temperature on fusion of quail embryonic myoblasts were examined using cells transformed with a temperature-sensitive mutant of Rous sarcoma virus (ts-RSV). The transformed quail myoblasts (QM-RSV) fused to form myotubes at 41 degrees C, the non-permissive temperature, but not at 35.5 degrees C, the permissive temperature. On incubation at 41 degrees C, a period of more than 10 hr was needed for the myoblasts to become fusion-competent, but calcium was not needed for development of fusion-competence. Once the cells had become competent, fusion proceeded even at 35.5 degrees C. These results suggest that the src gene product expressed at 35.5 degrees C may control the fusion of cells in the competent stage by inactivating a component(s) that is associated with fusion-competence. However, fusion of even myoblasts in the competent stage was blocked in calcium-deficient medium, suggesting that calcium is essential for the fusion, probably at a step immediately before membrane union. Unlike fusion, other biochemical processes of differentiation proceeded even in calcium-deficient medium, indicating a distinction of fusion from these other processes during myoblast differentiation.  相似文献   

16.
[14C]Noviflumuron uptake, clearance, rate of excretion, and transfer from treated to untreated termite workers were evaluated at 15,19, 23, and 27 degrees C. Feeding units were constructed from plastic containers provisioned with washed sand, distilled water, [14C]noviflumuron-treated feeding discs (0.05 or 0.5% [AI]), and Reticulitermes flavipes (Kollar) workers. Feeding units were held in environmental growth chambers preset at 15, 19, 23, and 27 degrees C. The amount of [14C]noviflumuron present within R. flavipes was measured by scintillation counting and subsequently quantified. Uptake of noviflumuron by R. flavipes workers at 15 degrees C was approximately 2.8 times less than at 19 or 23 degrees C and approximately 4.4 times less than at 27 degrees ighest uptake of [14C]noviflumuron occurred at 27 degrees C and 144 h. Most transfer of [14C]noviflumuron from treated to untreated termite workers occurred between 19 and 27 degrees C. [14C]Noviflumuron had a half-life in R. flavipes workers of approximately 31-45 d, dependent on temperature. A higher amount of [14C]noviflumuron was lost through excretion at > or = 19 degrees C (approximately 15-22%) compared with 15 degrees C (0.27%). Results indicated that increased uptake, transfer, and clearance of noviflumuron by R. flavipes occurred at warmer temperatures (19-27 degrees C), and all of these processes were significantly lower at 15 degrees C.  相似文献   

17.
Quail embryonic pectoral myoblasts fuse with each other at 35.5 degrees C and 41 degrees C to essentially equal extents. When the myoblasts were transformed with a temperature-sensitive mutant of Rous sarcoma virus (ts-RSV), their fusion and biochemical processes of differentiation became temperature-sensitive: their fusion occurred at 41 degrees C, the non-permissive temperature, but not at 35.5 degrees C, the permissive temperature, suggesting that the fusion was regulated by the viral transforming gene. Fusion of the transformed cells proceeded more rapidly and synchronously than that of the parent cells at 41 degrees C, and was completely suppressed at the permissive temperature, unlike that of the parent cells. These transformed cells were used to examine the relationship between myogenic differentiation and the tyrosine kinase activity of the src gene product. In spite of the temperature sensitivity of transformation, results showed that expressions of the src gene at 35.5 degrees C and 41 degrees C were similar. However, the level of tyrosine-phosphorylated protein was decreased at 41 degrees C. Moreover, myoblast fusion could occur at 35.5 degrees C in the presence of herbimycin A, an inhibitor of the tyrosine kinase activity of the src gene product. These results indicate that the tyrosine kinase activity of the src gene product is closely associated with regulation of myogenic differentiation of the cells.  相似文献   

18.
The floral scent emission and endogenous level of its components in Petunia axillaris under different conditions (20, 25, 30, and 35 degrees C) were investigated under the hypothesis that floral scent emission would be regulated by both metabolic and vaporization processes. The total endogenous amount of scent components decreased as the temperature increased, the total emission showing a peak at 30 degrees C. This decrease in endogenous amount was compensated for by increased vaporization, resulting in an increase of floral scent emission from 20 degrees C to 30 degrees C. The ambient temperature differently and independently influenced the metabolism and vaporization of the scent compounds, and differences in vapor pressure among the scent compounds were reduced as the temperature increased. These characteristics suggest the operation of an unknown regulator to change the vaporization of floral scent.  相似文献   

19.
Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly regulate digestion pH, and where the waste is produced at a pH value much higher than neutral.  相似文献   

20.
Thermal inactivation of nonproteolytic Clostridium botulinum type E spores was investigated in rainbow trout and whitefish media at 75 to 93 degrees C. Lysozyme was applied in the recovery of spores, yielding biphasic thermal destruction curves. Approximately 0.1% of the spores were permeable to lysozyme, showing an increased measured heat resistance. Decimal reduction times for the heat-resistant spore fraction in rainbow trout medium were 255, 98, and 4.2 min at 75, 85, and 93 degrees C, respectively, and those in whitefish medium were 55 and 7.1 min at 81 and 90 degrees C, respectively. The z values were 10.4 degrees C in trout medium and 10.1 degrees C in whitefish medium. Commercial hot-smoking processes employed in five Finnish fish-smoking companies provided reduction in the numbers of spores of nonproteolytic C. botulinum of less than 10(3). An inoculated-pack study revealed that a time-temperature combination of 42 min at 85 degrees C (fish surface temperature) with >70% relative humidity (RH) prevented growth from 10(6) spores in vacuum-packaged hot-smoked rainbow trout fillets and whole whitefish stored for 5 weeks at 8 degrees C. In Finland it is recommended that hot-smoked fish be stored at or below 3 degrees C, further extending product safety. However, heating whitefish for 44 min at 85 degrees C with 10% RH resulted in growth and toxicity in 5 weeks at 8 degrees C. Moist heat thus enhanced spore thermal inactivation and is essential to an effective process. The sensory qualities of safely processed and more lightly processed whitefish were similar, while differences between the sensory qualities of safely processed and lightly processed rainbow trout were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号