首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously shown that cultured rat alveolar macrophages synthesize and secrete lipoprotein lipase into the medium. The purpose of the present experiments is to examine whether cholesterol-enriched lipoproteins from cholesterol-fed animals have any effects on the lipoprotein lipase secretion and the lipid accumulation in macrophages. Macrophages incubated with the VLDL obtained from rats fed a normal diet secreted 2-fold higher amounts of lipoprotein lipase than those without lipoproteins. Intermediate-, low- and very-low-density lipoproteins from rats fed a high-cholesterol diet also enhanced the lipoprotein lipase secretion. Normal high- and low-density lipoproteins, and high-density lipoproteins from hypercholesterolemic animals did not cause any increase in the lipoprotein lipase secretion. The lipoproteins which stimulated the lipoprotein lipase secretion caused intracellular accumulation of both triacylglycerol and cholesterol. It is speculated that macrophages residing in the environment rich in lipoproteins, especially hypercholesterolemic lipoproteins, take them up and accumulate lipids intracellularly, and that this process links with the lipoprotein lipase secretion. The secreted lipoprotein lipase could facilitate, by degrading lipoproteins, the uptake of lipoprotein lipase-modified lipoproteins. Probably such a series of events is of importance in the foam cell formation of macrophages.  相似文献   

2.
Heparin decreases the degradation rate of lipoprotein lipase in adipocytes   总被引:3,自引:0,他引:3  
The mechanism responsible for the stimulation of secretion of lipoprotein lipase by heparin in cultured cells was studied with avian adipocytes in culture. Immunoprecipitation followed by electrophoresis and fluorography were used to isolate and quantitate the radiolabeled enzyme, whereas total lipoprotein lipase was quantitated by radioimmunoassay. Rates of synthesis of lipoprotein lipase were not different for control or heparin treatments as judged by incorporation of L-[35S]methionine counts into lipoprotein lipase during a 20-min pulse. This observation was corroborated in pulse-chase experiments where the calculation of total lipoprotein lipase synthesis, based on the rate of change in enzyme-specific activity during the chase, showed no difference between control (8.13 +/- 3.1) and heparin treatments (9.1 +/- 5.3 ng/h/60-mm dish). Secretion rates of enzyme were calculated from measurements of the radioactivity of the secreted enzyme and the cellular enzyme-specific activity. Degradation rates were calculated by difference between synthesis and secretion rates of enzyme. In control cells 76% of the synthesized enzyme was degraded. Addition of heparin to the culture medium reduced the degradation rate to 21% of the synthetic rate. The presence of heparin in cell media resulted in a decrease in apparent intracellular retention half-time for secreted enzyme from 160 +/- 44 min to 25 +/- 1 min. The above data demonstrate that the increase in lipoprotein lipase protein secretion, observed upon addition of heparin to cultured adipocytes, is due to a decreased degradation rate with no change in synthetic rate. Finally, newly synthesized lipoprotein lipase in cultured adipocytes is secreted constitutively and there is no evidence that it is stored in an intracellular pool.  相似文献   

3.
4.
Lipoprotein lipase synthesized by cultured rat preadipocytes is present in three compartments: an intracellular, a surface-related 3-min heparin-releasable, and that secreted into the culture medium. 30 min after addition of 6 microM monensin, the lipoprotein lipase activity in the heparin-releasable compartment starts to decrease; by 4 h of monensin treatment the lipoprotein lipase activity in the heparin-releasable pool and in the culture medium is about 10% of that found in control dishes. The intracellular activity, which had been identified as lipoprotein lipase by an antiserum to lipoprotein lipase, increases slowly and doubles by 24 h. However, since the cellular compartment accounts for 10-25% of total activity, this increase does not account for the missing enzyme activity. To determine whether this enzyme molecule is synthesized but is not active, incorporation of labeled leucine, mannose and galactose into immunoadsorbable lipoprotein lipase was studied in control, monensin- or tunicamycin-treated cells. Addition of tunicamycin (5 micrograms/ml) for 24 h caused a 30-50% reduction in immunoadsorbable lipoprotein lipase, but the enzyme activity was reduced by 90%. On the other hand, 4 h monensin treatment reduced both incorporation of [3H]leucine into immunoadsorbable lipoprotein lipase and heparin-releasable and medium lipoprotein lipase activity by 57 to 77%. The immunoadsorbable lipoprotein lipase in the intracellular compartment has a [14C]mannose to [3H]galactose ratio of 0.15 and this ratio increased 6-fold in monensin-treated cells. The intracellular lipoprotein lipase in monensin-treated cells had the same affinity for both the native and synthetic substrate as the lipoprotein lipase in control cells, yet its spontaneous secretion into the culture medium and its release by 3 min heparin treatment was markedly decreased. The present results indicate that: the presence of asparagine-linked oligosaccharide (formation of which is inhibited by tunicamycin) is mandatory for the expression of lipoprotein lipase activity; lipoprotein lipase is active also in a high mannose form; and terminal glycosylation and oligosaccharide processing, which is inhibited by monensin, may be important for the appearance of heparin-releasable lipoprotein lipase and secretion of lipoprotein lipase into the medium.  相似文献   

5.
Lipoprotein lipase activity was higher in fat-pad pieces than in isolated adipocytes from the same fed rats, whereas hydrolysis of triacylglycerols from triacylglycerol-rich lipoproteins was similar in the two preparations when incubated either in basal conditions or in the presence of heparin. In both preparations there was a similar release of lipoprotein lipase activity into the medium during basal incubation, enhanced by the presence of heparin. In fat-pad pieces, but not in isolated adipocytes, incubation with heparin produced a decrease in the lipoprotein lipase activity measured in the tissue preparation. In fat-pad pieces from 24 h-starved rats, lipoprotein lipase activity was the same as in isolated adipocytes from the same animals and incubation with heparin did not affect the appearance of lipoprotein lipase in the medium or the utilization of triacylglycerols from triacylglycerol-rich lipoproteins. These results support the following conclusions. (1) The effectiveness of lipoprotein lipase in adipose tissue preparations in vitro depends more on its availability to the substrate than on its total activity. (2) Heparin acts on adipose tissue preparations from fed animals both by enhancing the release of pre-existing extracellular enzyme (which is absent in isolated adipocytes) and by enhancing the transfer outside the cells of the intracellular (and mainly undetectable) enzyme that is activated in the secretion process. (3) In adipose tissue from starved animals there is not only a decrease in the active extracellular form of lipoprotein lipase activity but also a reduction in the intracellular (and mainly undetectable) pool of the enzyme.  相似文献   

6.
Incubation of isolated cardiac myocytes with 500 microM-8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) or 100 microM-forskolin for 2 1/2 h did not increase the heparin-induced release of lipoprotein lipase (LPL) into the medium. When LPL activity in cardiac myocytes was depleted by treatment of rats with cycloheximide (2 mg/kg; 2.5 h) and inclusion of the protein-synthesis inhibitor in the isolation solutions, incubation with CPT-cAMP or forskolin did not influence the rate of repletion of LPL activity in cells or the recovery of heparin-releasable LPL activity. Although the administration of cholera toxin (0.5 mg/kg; 16-17 h) to rats increased LPL activity in a low-speed supernatant fraction from heparin-perfused hearts, LPL activity was not increased in cardiac myocytes from cholera-toxin-treated rat hearts, and the heparin-induced release of LPL was unchanged. Incubation of cultured ventricular myocytes with 1 microgram of cholera toxin/ml or 500 microM-CPT-cAMP for 24 h did not increase cellular LPL activity or LPL released into the culture medium after a 40 min incubation with heparin. Therefore interventions that stimulate adenylate cyclase activity (forskolin, cholera toxin) or incubation with CPT-cAMP do not increase cellular LPL activity or promote the translocation of LPL to a heparin-releasable fraction in cardiac myocytes.  相似文献   

7.
Summary Heparin (5 U/ml) induced the release of LPL into the incubation medium of cardiac myocytes isolated from adult rat hearts. The secretion of LPL occurred in two phases: a rapid release (5–10 min of incubation with heparin) that was independent of protein synthesis followed by a slower rate of release that was inhibited by cycloheximide. The rapid release of LPL induced by heparin likely occurs from sites that are at or near the cell surface. LPL secretion could also be stimulated by heparan sulfate and dermatan sulfate, but not by hyaluronic acid, chondroitin sulfate or keratan sulfate. Heparin-releasable LPL activity measured in short-term incubations represented a large fraction (40–50%) of the initial LPL activity associated with myocytes, but the fall in cellular LPL activity following heparin was less than the amount of LPL activity secreted into the incubation medium. This discrepancy was not due to latency of LPL in the pre-heparin cell homogenates, but in part could be due to a three-fold greater affinity of the heparin-released enzyme for substrate as compared to LPL in post-heparin myocyte homogenates.Abbreviations LPL lipoprotein lipase  相似文献   

8.
1. Isolated cardiac-muscle cells from the hearts of adult rats were shown to retain a high amount of viability during 4 h of incubation when viability was assessed by Trypan Bue stain exclusion and intracellular enzyme leakage. 2. The cells also retained their ability to take up O2 and utilize added substrates over the period of incubation at both 25 and 30 degrees C. 3. When cells from the hearts of fed rats were incubated in a buffered-salts solution at pH 7.4 in the presence of amino acids and heparin, lipoprotein lipase activity in the medium increased progressively. 4. During these incubations the intracellular activity of the enzyme remained constant and the total activity of lipoprotein lipase in the system (cells plus medium) increased by 80% over the 4 h of incubation at 25 degrees C. 5. In the absence of heparin only low amounts of enzyme activity were detectable in the medium and the total lipoprotein lipase activity in the system remained constant. 6. The measurement of lipoprotein lipase activity in either fresh homogenates of the cells or in homogenates of acetone/diethyl ether-dried powders of the cells had no effect on the overall pattern of activity change during the incubations, although as reported previously the total activity detected with acetone/diethyl either-dried preparations was approx. 3-fold higher than with fresh cell homogenates. 7. The observations were compared with published data on lipoprotein lipase activity changes in neonatal heart cell cultures maintained in vitro.  相似文献   

9.
Cultured Chinese-hamster ovary cells (CHO cells) were found to produce and secrete a lipase, which was identified as a lipoprotein lipase by the following criteria. Its activity was stimulated by serum and apolipoprotein CII, and was inhibited by high salt concentration. The lipase bound to heparin-agarose and co-eluted with 125I-labelled bovine lipoprotein lipase in a salt gradient. A chicken antiserum to bovine lipoprotein lipase inhibited the activity and precipitated a labelled protein of the same apparent size as bovine lipoprotein lipase from media of CHO cells labelled with [35S]methionine. The lipase activity and secretion were similar in growing cells and in cells that had reached confluency. Hence, lipoprotein lipase appears to be expressed constitutively in CHO cells and is not linked to certain growth conditions, as in pre-adipocyte and macrophage cell lines. At 37 degrees C, but not at 4 degrees C, heparin increased the release of lipase to the medium 2-4-fold. This increased release occurred without depletion of cell-associated lipase activity, suggesting that heparin enhanced release of newly synthesized lipase.  相似文献   

10.
The objective of this investigation was to test the hypothesis that the diabetes-induced reduction in lipoprotein lipase activity in cardiac myocytes may be due to hypertriglyceridemia. Administration of 4-aminopyrazolopyrimidine (50 mg/kg) to control rats for 24 h reduced plasma triacylglycerol levels and increased the heparin-induced release of lipoprotein lipase into the incubation medium of cardiac myocytes. The acute (3-5 days) induction of diabetes by streptozotocin (100 mg/kg) produced hypertriglyceridemia and reduced heparin-releasable lipoprotein lipase activity in cardiac myocytes. Treatment of diabetic rats with 4-aminopyrazolopyrimidine resulted in a fall in plasma triacylglycerol content and increased heparin-releasable lipoprotein lipase activity. Administration of Triton WR-1339 also resulted in hypertriglyceridemia, but the heparin-induced release of lipoprotein lipase from control cardiac myocytes was not reduced in the absence of lipolysis of triacylglycerol-rich lipoproteins. Treatment with Triton WR-1339 did, however, increase the heparin-induced release of lipoprotein lipase from diabetic cardiac myocytes. Preparation of cardiac myocytes with 0.9 mM oleic acid resulted in a decrease in both total cellular and heparin-releasable lipoprotein lipase activities. These results suggest that the diabetes-induced reduction in heart lipoprotein lipase activity may, at least in part, be due to an inhibitory effect of free fatty acids, derived either from lipoprotein degradation or from adipose tissue lipolysis, on lipoprotein lipase activity in (and (or) release from) cardiac myocytes.  相似文献   

11.
The effect of phenobarbital upon the differentiation of two preadipocyte cell lines, 3T3 F442A and 3T3 L-1, was examined by measuring the synthesis and secretion of lipoprotein lipase. Extracellular enzyme was measured by treating intact cells with heparin, and the intracellular enzyme was subsequently assayed in cell homogenates. When confluent cultures of 3T3 F442A cells were treated with insulin, the cells underwent differentiation as indicated by increased activity of lipoprotein lipase within 6 days, followed in turn by increased levels of protein and triglyceride. Addition of phenobarbital with insulin enhanced total lipoprotein lipase, protein, and triglyceride content. The activity of lipoprotein lipase accumulated in the heparin-releasable fraction during differentiation was increased 2- to 3-fold and the intracellular enzyme was enhanced 15- to 20-fold by the addition of phenobarbital. The ability of phenobarbital to modulate differentiation was dependent upon the time of addition. When added early in the postconfluent period, there was a greater increase in lipoprotein lipase activity than when the drug was added at later times. Phenobarbital also stimulated lipoprotein lipase in differentiating 3T3 L-1 cells in the presence of insulin, although lipoprotein lipase activity was moderately enhanced by phenobarbital alone in these cells. These results suggest that phenobarbital may affect the conversion of adipoblasts into preadipocytes and thereby increase the proportion of cells susceptible to the differentiating stimulus.  相似文献   

12.
The rate of iron release from thioglycollate-elicited mouse peritoneal macrophages pulsed with 59Fe-labelled transferrin-antitransferrin immune complexes was lower than that from resident or Corynebacterium parvum-activated macrophages. Anaerobic conditions increased the rate of iron release by thioglycollate-elicited macrophages but had no effect on resident or C. parvum-activated macrophages. Thioglycollate-elicited macrophages also contained less ferritin and were deficient in their ability to synthesis ferritin. Incubation of these cells in medium containing 100 microM iron caused some increase in ferritin synthesis, but the response to iron was much less pronounced than that by resident or C. parvum-activated macrophages. In the thioglycollate-elicited macrophages, relatively less iron was incorporated into ferritin, and more into other soluble macromolecules and insoluble haemosiderin-like compounds than in the other types of macrophages. It is proposed that thioglycollate-elicited macrophages tend to divert iron to a relatively inert intracellular pool, and that this could account for their reduced ability to release iron. Such a mechanism might help to explain the reduced release of iron by liver and spleen macrophages occurring during inflammation.  相似文献   

13.
The effect of pretreatment with colchicine or vinblastine on the lipoprotein lipase activity of rat heart was studied. Administration of colchicine or vinblastine 4 h prior to perfusion of the heart caused a very marked reduction in lipoprotein lipase activity released into the perfusate within 1 min of heparin perfusion. At the same time an increase in residual heart lipase occurred so that total lipoprotein lipase content of the heart (heparin releasable plus residual) did not change. The colchicine effect was dose and time dependent; no decrease in heparin-releasable enzyme activity occurred after only 30 min of pretreatment or upon addition of colchicine into the perfusate. These results indicate that colchicine did not impede enzyme synthesis or its release from the cell surface, but may have interfered with the transport of lipoprotein lipase from the site of its synthesis to the endothelial cell surface.  相似文献   

14.
Hepatic triglyceride lipase (HTGL) was measured in primary rat hepatocytes maintained for 3 days under three different culture conditions: basal medium, basal medium plus insulin, and basal medium plus insulin and phenobarbital. The activity of HTGL secreted by these cells was measured by treating intact cells with heparin; intracellular enzyme was subsequently measured in cell homogenates. Insulin stimulated intracellular triglyceride lipase activity by 48% and extracellular lipase by 30%. Phenobarbital, an enzyme-inducing drug, caused a further 15% increase in extracellular hepatic triglyceride lipase; whereas, the intracellular activity was reduced. The presence of insulin greatly stimulated the rate of enzyme secretion, and this rate was not notably affected by the presence of phenobarbital. After 3 days in culture, the short term (2-8 h) synthesis and secretion of enzyme from cultures treated with insulin or insulin plus phenobarbital were equally inhibited by cycloheximide. Monensin also inhibited enzyme secretion in both cultures and caused a similar increase in intracellular lipase activities. Insulin did not significantly affect the proportion of intracellular enzyme (17.7% basal vs. 15.8% insulin). On the other hand phenobarbital produced a 20-30% reduction in the proportion of intracellular enzyme (12.5 vs. 17.7% basal or 15.8% insulin). These findings suggest a drug-induced redistribution of triglyceride lipase.  相似文献   

15.
The mechanism of heparin stimulation of rat adipocyte lipoprotein lipase   总被引:2,自引:0,他引:2  
Free fat cells and stromal-vascular cells were prepared from rat adipose tissue by incubation with collagenase. NH(4)OH-NH(4)Cl extracts of acetone-ether powders prepared from fat cells contained lipoprotein lipase activity but extracts of stromal-vascular cells did not. Intact fat cells released lipoprotein lipase activity into incubation medium, but intact stromal-vascular cells did not. The lipoprotein lipase activity of the medium was increased when fat cells were incubated with heparin, and this was accompanied by a corresponding decrease in the activity of subsequently prepared fat cell extracts. Heparin did not release lipoprotein lipase activity from stromal-vascular cells. The lipoprotein lipase activity of NH(4)OH-NH(4)Cl extracts of fat cell acetone powders is increased by the presence of heparin during the assay. This increase is not due to preservation of enzyme activity, but to increased binding of lipoprotein lipase to chylomicrons. Protamine sulfate and sodium chloride have little effect on the binding of lipoprotein lipase to chylomicrons, but they inhibit enzyme activity after binding to substrate has occurred. These inhibitors do, however, inhibit the stimulatory effect of heparin on enzyme-substrate binding.  相似文献   

16.
Programmed cell death of lipid-laden macrophages is a prominent feature of atherosclerotic lesions and mostly ascribed to accumulation of excess intracellular cholesterol. The present in vitro study investigated whether intracellular triacylglycerol (TG) accumulation could activate a similar apoptotic response in macrophages. To address this question, we utilized peritoneal macrophages isolated from mice lacking adipose triglyceride lipase (ATGL), the major enzyme responsible for TG hydrolysis in multiple tissues. In Atgl(-/-) macrophages, we observed elevated levels of cytosolic Ca(2+) and reactive oxygen species, stimulated cytochrome c release, and nuclear localization of apoptosis-inducing factor. Fragmented mitochondria prior to cell death were indicative of the mitochondrial apoptosis pathway being triggered as a consequence of defective lipolysis. Other typical markers of apoptosis, such as externalization of phosphatidylserine in the plasma membrane, caspase 3 and poly(ADP-ribose) polymerase cleavage, were increased in Atgl(-/-) macrophages. An artificial increase of cellular TG levels by incubating wild-type macrophages with very low density lipoprotein closely mimicked the apoptotic phenotype observed in Atgl(-/-) macrophages. Results obtained during the present study define a novel pathway linking intracellular TG accumulation to mitochondrial dysfunction and programmed cell death in macrophages.  相似文献   

17.
Macrophage free cholesterol content regulates apolipoprotein E synthesis   总被引:7,自引:0,他引:7  
The relationship between macrophage cholesterol content and apolipoprotein E (apoE) synthesis was studied in mouse peritoneal macrophages. Incubations in acetylated low density lipoprotein led to a concentration-dependent increase in macrophage free and esterified cholesterol content and apoE synthesis. Enhanced apoE production reflected increased apoE mRNA abundance in cholesterol-enriched cells. Including an inhibitor of acyl-CoA:cholesterol acyltransferase in incubations with acetylated low density lipoprotein did not diminish the apoE response, suggesting that increased macrophage free cholesterol content was responsible for enhancing apoE production. Incubations in 25-OH cholesterol also produced a dose-dependent stimulation of macrophage apoE synthesis. Removing free cholesterol from cells using high density lipoprotein returned apoE synthetic rates toward base line. Macrophage lysate apoE and medium apoE levels changed in parallel during cholesterol loading and efflux indicating that regulation of apoE by free cholesterol was not primarily at the level of secretion. It is concluded that (a) cholesterol enrichment of macrophages increases apoE mRNA abundance and stimulates apoE synthesis and secretion; (b) neither cholesterol esterification nor cholesteryl ester accumulation are required for increased apoE production.  相似文献   

18.
The release of hepatic triglyceride lipase from cultured rat hepatocytes and its hormonal regulation were studied. The activity of lipase released into the medium in the presence of heparin was increasing for 24 hours on the 2nd day of culture. The activity in the absence of heparin was only 10% of that in the presence of heparin. When hepatocytes were cultured with anti-hepatic triglyceride lipase IgG, the lipase activity was suppressed by 92%. The results suggest that the enzyme released into the culture medium is identical to hepatic triglyceride lipase which can be released only in the presence of heparin, the mode of release being similar to that of lipoprotein lipase from adipocytes. The addition of colchicine and monensin to the medium resulted in the inhibition of lipase secretion by 20% and 61%, respectively. Insulin enhanced lipase activity only 20%, whereas dexamethasone suppressed the activity by 44%. These data indicated that hepatic triglyceride lipase is secreted and released from hepatocytes in the presence of heparin and its secretion is regulated by hormones.  相似文献   

19.
Cholesteryl ester accumulation in macrophages and foam cell formation is believed to play an important role in atherogenesis. The effect of Lp(a) on the incorporation of [14C]oleate into cholesteryl esters was studied in mouse peritoneal macrophages. In view of the physico-chemical similarities between Lp(a) and LDL, the results were compared with those obtained with LDL. Native Lp(a) and LDL did not stimulate cholesteryl ester formation. Incubation of macrophages with Lp(a)- or LDL-dextran sulfate complexes caused a significant increase in cholesteryl ester formation. A similar effect was observed when Lp(a) or LDL were incubated with macrophages in the presence of antibodies directed against the specific Lp(a) apoprotein or against LpB. Treatment of Lp(a) with acetic anhydride or malondialdehyde (MDA) was followed by precipitation of most of the lipoprotein. Therefore, these modifications were not suitable to study the uptake of modified Lp(a) by macrophages. Studies with acetyl-LDL or MDA-treated LDL caused the well-known stimulation of [14C]oleate incorporation into cholesteryl esters. Thus, the modification of Lp(a) by sulfated polysaccharides or by treatment with antibodies yields similar cholesteryl ester deposition in mouse peritoneal macrophages as observed with modified LDL. This might be one mechanism by which Lp(a) exerts its atherogenicity.  相似文献   

20.
The role of heparin-releasable hepatic endothelial lipase (HL) in human plasma lipoprotein metabolism was investigated by examining the effects of intravenous infusion of heparin (180 units/kg over 2 h) in 8 subjects with primary extrahepatic lipoprotein lipase deficiency. In addition to reducing the triglyceride concentration in very low-density lipoproteins, heparin-induced release of HL reduced the phopholipid and protein concentrations in the HDL2 subclass of high-density lipoprotein (by 28% and 36% respectively, mean values) and simultaneously increased the HDL3 phospholipid concentration (by 23%), providing the first in vivo evidence for a function of HL in the interconversion of the major HDL subfractions in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号