首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy) benzylamino)benzoate (ZJ0273) is a new herbicide which inhibits acetolactate synthase (ALS). The ZJ0273 is considered as safe for the environment and exhibits a satisfactory effect on weed control in the rapeseed field. ALS is the key enzyme of reactions in the biosynthesis of total amino acids (TAAs) especially branched-chain amino acids (BCAAs). This study reports the effect of ZJ0273 on BCAAs and TAAs in rapeseed leaves using near-infrared spectroscopy (NIRS) techniques. A decrease in TAAs and BCAAs contents was observed as the herbicide dosages were increased along with leaf senescence. The wavelengths 2,416 and 1,340 nm were selected to develop the NIRS model for detecting BCAAs and TAAs, and correlation coefficients of model’s prediction set were 0.9823, 0.9764, 0.9831, and 0.9968 for valine, isoleucine, leucine, and TAAs, respectively. The results indicated that 100 mg/L ZJ0273 was a safe dosage for oilseed rape as it did not show a significant effect on the contents of amino acids compared to other higher dosages (500 and 1,000 mg/L).  相似文献   

2.
The aim was to determine the effects of enhanced availability of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) on ammonia detoxification to glutamine (GLN) and protein metabolism in two types of skeletal muscle under hyperammonemic conditions. Isolated soleus (SOL, slow-twitch) and extensor digitorum longus (EDL, fast-twitch) muscles from the left leg of white rats were incubated in a medium with 1 mM ammonia (NH3 group), BCAAs at four times the concentration of the controls (BCAA group) or high levels of both ammonia and BCAA (NH3 + BCAA group). The muscles from the right leg were incubated in basal medium and served as paired controls. L-[1-14C]leucine was used to estimate protein synthesis and leucine oxidation, and 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. We observed decreased protein synthesis and glutamate and α-ketoglutarate (α-KG) levels and increased leucine oxidation, GLN levels, and GLN release into medium in muscles in NH3 group. Increased leucine oxidation, release of branched-chain keto acids and GLN into incubation medium, and protein synthesis in EDL were observed in muscles in the BCAA group. The addition of BCAAs to medium eliminated the adverse effects of ammonia on protein synthesis and adjusted the decrease in α-KG found in the NH3 group. We conclude that (i) high levels of ammonia impair protein synthesis, activate BCAA catabolism, enhance GLN synthesis, and decrease glutamate and α-KG levels and (ii) increased BCAA availability enhances GLN release from muscles and attenuates the adverse effects of ammonia on protein synthesis and decrease in α-KG.  相似文献   

3.
To examine which branched-chain amino acids affect the plasma glucose levels, we investigated the effects of leucine, isoleucine, and valine (0.3 g/kg body weight p.o.) in normal rats using the oral glucose tolerance test (OGTT, 2 g/kg). A single oral administration of isoleucine significantly reduced plasma glucose levels 30 and 60 min after the glucose bolus, whereas administration of leucine and valine did not produce a significant decrease. Oral administration of valine significantly enhanced the plasma glucose level at 30 min after the glucose administration and leucine had a similar effect at 120 min. At each measurement timepoint, the insulin levels of the treated groups were lower than that of the control group. We then investigated the effects of leucine, isoleucine or valine at the same concentration (1 mM) on glucose metabolism in C(2)C(12) myotubes in the absence of insulin. Glucose consumption was elevated by 16.8% in the presence of 1 mM isoleucine compared with the control. Conversely, 1 mM leucine or valine caused no significant changes in glucose consumption in the C(2)C(12) myotubes. The 2-deoxyglucose uptake of C(2)C(12) myotubes significantly increased upon exposure to 1-10 mM isoleucine and 5-10 mM leucine. However, isoleucine caused no significant difference in glycogen synthesis in C(2)C(12) myotubes, although leucine and valine caused a significant increase in intracellular glycogen compared with the control. The isoleucine effect on glucose uptake was mediated by phosphatidylinositol 3-kinase (PI3K), but was independent of mammalian target of rapamycin (mTOR). These results suggest that isoleucine stimulates the insulin-independent glucose uptake in skeletal muscle cells, which may contribute to the plasma glucose-lowering effect of isoleucine in normal rats.  相似文献   

4.
The effect of amino acid on muscle protein degradation remains unclear. Recent studies have elucidated that proteolysis in catabolic conditions occurs through ubiquitin-proteasome proteolysis pathway and that muscle-specific ubiquitin ligases (atrogin-1 and MuRF1) play an important role in protein degradation. In the present study, we examined the direct effect of 5 mM amino acids (leucine, isoleucine, valine, glutamine and arginine) on atrogin-1 and MuRF1 levels in C2C12 muscle cells and the involved intracellular signal transduction pathway. Leucine, isoleucine and valine suppressed atrogin-1 and MuRF1 mRNA levels (approximately equal to 50%) at 6 and 24 h stimulations. Arginine showed a similar effect except at 24 h-treatment for atrogin-1 mRNA. However, glutamine failed to reduce atrogin-1 and MuRF1 mRNA levels. The inhibitory effect of leucine, isoleucine or arginine on atrogin-1 mRNA level was reversed by rapamycin, although wortmannin did not reverse the effect. PD98059 and HA89 reduced basal atrogin-1 level without influencing the inhibitory effects of those amino acids. The inhibitory effect of leucine, isoleucine or arginine on MuRF1 mRNA levels was not reversed by rapamycin. Taken together, these findings indicated that leucine, isoleucine and arginine decreased atrogin-1 mRNA levels via mTOR and that different pathways were involved in the effect of those amino acids on MuRF1 mRNA levels.  相似文献   

5.
Branched-chain amino acids (BCAAs) modulate various cellular functions, in addition to providing substrates for the production of proteins. In this study, we examined the effect of BCAAs on the secretion of hepatocyte growth factor (HGF) by hepatic stellate cells. A hepatic stellate cell clone was cultured in medium supplemented with various concentrations of valine, leucine, or isoleucine. Of these BCAAs, leucine markedly induced an increase in the levels of HGF in the medium in a dose-dependent manner. The addition of valine or isoleucine had no significant effect on HGF levels in the medium. The difference in levels of HGF in the medium between leucine-treated and non-treated cells was enhanced by the incubation period. These results demonstrate that, among BCAAs, leucine stimulates the secretion of HGF by cultured hepatic stellate cells.  相似文献   

6.
The changes in the concentrations of plasma amino acids do not always follow the flow-based metabolic pathway network. We have previously shown that there is a control-based network structure among plasma amino acids besides the metabolic pathway map. Based on this network structure, in this study, we performed dynamic analysis using time-course data of the plasma samples of rats fed single essential amino acid deficient diet. Using S-system model (conceptual mathematical model represented by power-law formalism), we inferred the dynamic network structure which reproduces the actual time-courses within the error allowance of 13.17%. By performing sensitivity analysis, three of the most dominant relations in this network were selected; the control paths from leucine to valine, from methionine to threonine, and from leucine to isoleucine. This result is in good agreement with the biological knowledge regarding branched-chain amino acids, and suggests the biological importance of the effect from methionine to threonine.  相似文献   

7.
The activity levels of leucine, isoleucine and valine aminotransferases were determined in various cerebral regions, liver and muscle of rats injected with a large dose of ammonium acetate and were compared with those of normal animals. In brain the activity levels of both leucine and isoleucine aminotransferases were elevated in both preconvulsive and convulsive states. Valine aminotransferase activity was suppressed in brain stem and corpus striatum and was elevated in cerebellum and hippocampus in preconvulsive states. During convulsions its activity was suppressed in cerebral cortex and hippocampus. Under these conditions, there was a suppression of both leucine and valine aminotransferases in muscle. In liver, however, the activities of these enzymes were elevated. The results suggested that the glutamate required for glutamine formation in hyperammonaemic states in brain might be obtained from branched chain amino acids, especially leucine and isoleucine.  相似文献   

8.
Alloxan injection in the rat results in a large increase of branched free amino acids (leucine, isoleucine, valine) in the blood, liver and muscle; it decreases most of the non essential free amino acids in liver. L-leucine administration in the diabetic rat results in a large decrease of plasma corticosterone. It increases free leucine but decreases free isoleucine and valine in blood and muscle. It decreases most of the essential free amino acids in liver.  相似文献   

9.
Leucine, but not isoleucine or valine, inhibited protein degradation and accelerated protein synthesis in hearts perfused with buffer that contained glucose (15 mM) and normal plasma levels of other amino acids, except for the branched chain compounds. Products of leucine, isoleucine, and valine metabolism also inhibited protein degradation and stimulated protein synthesis. These compounds included the transamination and decarboxylation products, as well as acetate, acetoacetate, and propionate. In some, but not all instances, inhibition of degradation and acceleration of synthesis were accompanied by an increase in intracellular leucine. When insulin was added to the perfusate, the rate of degradation was reduced by 40%, but addition of leucine was ineffective in the presence of the hormone. Insulin, leucine (2 mM) and a mixture of branched chain amino acids at normal plasma levels increased latency of cathepsin D in hearts that were perfused with buffer containing glucose. A combination of leucine and insulin increased latency more than either substance alone. These studies indicate that leucine as well as a variety of substrates that are oxidized in the citric acid cycle are involved in regulation of protein turnover in heart muscle.  相似文献   

10.
Summary We studied the plasma amino acid profiles in four models of hepatic injury in rats. In partially hepatectomized rats (65% of liver was removed) we observed significant increase of aromatic amino acids (AAA; i.e. tyrosine and phenylalanine), taurine, aspartate, threonine, serine, asparagine, methionine, ornithine and histidine. Branched-chain amino acids (BCAA; i.e. valine, leucine and isoleucine) concentrations were unchanged. In ischemic and carbon tetrachloride acute liver damage we observed extreme elevation of most of amino acids (BCAA included) and very low concentration of arginine. In carbon tetrachloride induced liver cirrhosis we observed increased levels of AAA, aspartate, asparagine, methionine, ornithine and histidine and decrease of BCAA, threonine and cystine. BCAA/AAA ratio decreased significantly in partially hepatectomized and cirrhotic rats and was unchanged in ischemic and acute carbon tetrachloride liver damage. We conclude that a high increase of most of amino acids is characteristic of fulminant hepatic necrosis; decreased BCAA/AAA ratio is characteristic of liver cirrhosis; and decrease of BCAA/AAA ratio may not be used as an indicator of the severity of hepatic parenchymal damage.Abbreviations BCAA branched-chain amino acids (i.e. valine, leucine and isoleucine) - AAA aromatic amino acids (i.e. tyrosine and phenylalanine)  相似文献   

11.
The branched chain amino acids (BCAAs), l-valine, l-leucine, and l-isoleucine, have recently been attracting much attention as their potential to be applied in various fields, including animal feed additive, cosmetics, and pharmaceuticals, increased. Strategies for developing microbial strains efficiently producing BCAAs are now in transition toward systems metabolic engineering from random mutagenesis. The metabolism and regulatory circuits of BCAA biosynthesis need to be thoroughly understood for designing system-wide metabolic engineering strategies. Here we review the current knowledge on BCAAs including their biosynthetic pathways, regulations, and export and transport systems. Recent advances in the development of BCAA production strains are also reviewed with a particular focus on l-valine production strain. At the end, the general strategies for developing BCAA overproducers by systems metabolic engineering are suggested.  相似文献   

12.
The branched‐chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over‐expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE‐TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map‐based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant‐containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed.  相似文献   

13.
Summary Free amino acids were estimated in the plasma of Leghorn, Cornish and White Rock hens, bred under identical conditions. It was found that the plasma of Leghorn hens had a lower content of amino acids. The differences were especially pronounced for proline, glutamic acid and glycine. It was established that a lower percentage of valine, leucine and isoleucine was typical of Leghorn hens in comparison with Cornish hens. The obtained results indicate that the level of free amino acids in blood plasma is genetically controlled  相似文献   

14.
Du Y  Meng Q  Zhang Q  Guo F 《Amino acids》2012,43(2):725-734
There has been a growing interest in controlling body weight by increasing dietary levels of leucine recently. By contrast, we have focused on studying the effect of deficiency of branched-chain amino acids (BCAAs) leucine on lipid metabolism. We previously have shown that mice fed a leucine-deficient diet for 7 days exhibit significant changes in lipid metabolism as demonstrated by suppressed lipogenesis in the liver and increased fat mobilization in white adipose tissue, the latter of which was found to be caused by increased lipolysis in WAT and uncoupling protein 1 expression in brown adipose tissue. The goal of our current study is to investigate whether the above effects of leucine deficiency can be generalized to the deficiency of other BCAAs including valine and isoleucine. In our current study, we show that valine or isoleucine deficiency has similar effects on reducing fat mass to leucine deprivation, in a similar manner as those observed during leucine deprivation.  相似文献   

15.
Transport of amino acids to the maize root   总被引:7,自引:5,他引:2       下载免费PDF全文
Oaks A 《Plant physiology》1966,41(1):173-180
When 5-mm maize root tips were excised and placed in an inorganic salts solution for 6 hours, there was a loss of alcohol-insoluble nitrogen. The levels of threonine, proline, valine, isoleucine, leucine, tyrosine, phenylalanine, and lysine in the alcohol soluble fraction were severely reduced, whereas those of glutamate, aspartate, ornithine, and alanine were scarcely affected. There was a 4-fold increase in the level of γ-aminobutyrate. Those amino acids whose synthesis appeared to be deficient in excised root tips also showed poor incorporation of acetate carbon. In addition, the results show that asparagine and the amino acids of the neutral and basic fraction were preferentially transported to the root tip region. The results therefore suggest that the synthesis of certain amino acids in the root tip region is restricted, and that this requirement for amino acids in the growing region could regulate the flow of amino acids to the root tip.  相似文献   

16.
Summary.  Previous investigations showed an impairment of amino acids (AA) metabolism in amyotrophic lateral sclerosis (ALS). It was hypothesized that excitatory AA may play an important role in the etiopathogenesis of this disease. The aim of the study was to determine plasma AA concentrations in ALS patients, and to examine the relationship between AA and the clinical state of ALS patients, the type of ALS onset and the duration of the disease. The study involved 20 ALS patients and 30 control group people. The AA analysis was performed by ion – exchange chromatography on an automatic AA analyser. The results showed significantly decreased concentrations of valine, isoleucine, leucine, tyrosine and aspartate in the plasma of the whole group of ALS patients compared to the control group, and a significantly decreased concentration of arginine in the patients with a long duration of ALS compared to the patients with a short duration. The clinical state of ALS patients significantly influenced only plasma alanine concentration. Other plasma AA concentrations were not significantly associated with clinical parameters of the disease. Our study confirms that metabolic abnormalities concerning AA exist in ALS patients. However, the normal plasma glutamate concentration observed in this study in the whole group of ALS patients compared to the controls does not exclude that this excitatory AA may play a role in neurodegeneration in ALS. Received June 22, 2002 Accepted October 3, 2002 Published online January 23, 2003 Correspondence: Joanna Iłżecka M.D., Department of Neurology, Medical University, Jaczewskiego 8, 20-954 Lublin, Poland, Fax: +48 81 742 55 34, E-mail: Ilzecka@medscape.com  相似文献   

17.
A simple and rapid high performance liquid chromatographic technique is described for the separation and quantitation of plasma branched chain amino acids. After addition of a norleucine internal standard, plasma samples are acidified with acetic acid, and amino acids are separated from proteins and other plasma components by passage of the acidified plasma through an ion exchange resin. The ammonium hydroxide eluate from the resin is dried, phenylisothiocyanate derivatives are prepared, and the amino acids are separated on a Waters reverse-phase "Pico-Tag" column with an ultraviolet detector set at 254 nm. In addition to the branched chain amino acids (leucine, valine, and isoleucine), aspartate, glutamate, serine, threonine, alanine, and methionine are quantitated with high precision and accuracy, as verified by quantitative recovery and comparison with an automatic amino acid analyzer. The advantages of the method are its simplicity, speed, stability of derivatives, high reproducibility, low per-sample cost, and the use of a simple fixed-wavelength ultraviolet detector.  相似文献   

18.
Spermine inhibited the transport of neutral aliphatic amino acids (valine, leucine, isoleucine, alanine, and glycine) into cells of Micrococcus lysodeikticus. On the other hand, spermine did not affect the uptake of basic (arginine and histidine), acidic (glutamic acid), or aromatic (phenylalanine and tyrosine) amino acids. Inhibition of uptake of the neutral amino acids by spermine is apparently of a noncompetitive nature; the V(max) decreased, whereas the apparent K(m) remained unaltered. The inhibition is most likely due to a specific binding of spermine to the carrier(s) of these amino acids. Related polyamines, spermidine and cadaverine, also caused inhibition of valine uptake, though to a lesser extent; spermidine was less active than spermine, and cadaverine showed the weakest effect of all. Valine, leucine, and isoleucine were transported into M. lysodeikticus cells by a common carrier as evidenced from competition experiments. The uptake of these amino acids is an active process; it was temperature-dependent and inhibited by azide (10(-1)m to 2.5 x 10(-2)m) and dinitrophenol (10(-3)m). The intracellular concentration of valine was 100-fold higher than in the medium.  相似文献   

19.
Parameters of branched-chain amino acids (BCAA; leucine, isoleucine and valine) and protein metabolism were evaluated using L-[1-(14)C]leucine and alpha-keto[1-(14)C]isocaproate (KIC) in the whole body and in isolated perfused liver (IPL) of rats fed ad libitum or starved for 3 days. Starvation caused a significant increase in plasma BCAA levels and a decrease in leucine appearance from proteolysis, leucine incorporation into body proteins, leucine oxidation, leucine-oxidized fraction, and leucine clearance. Protein synthesis decreased significantly in skeletal muscle and the liver. There were no significant differences in leucine and KIC oxidation by IPL. In starved animals, a significant increase in net release of BCAA and tyrosine by IPL was observed, while the effect on other amino acids was non-significant. We conclude that the protein-sparing phase of uncomplicated starvation is associated with decreased whole-body proteolysis, protein synthesis, branched-chain amino acid (BCAA) oxidation, and BCAA clearance. The increase in plasma BCAA levels in starved animals results in part from decreased BCAA catabolism, particularly in heart and skeletal muscles, and from a net release of BCAA by the hepatic tissue.  相似文献   

20.
The present study investigated (1) the free amino acid (FAA) composition in semen of rainbow trout Oncorhynchus mykiss and carp Cyprinus carpio, (2) enzyme systems involved in amino acid metabolism and (3) the effect of amino acids on sperm viability under in vitro storage conditions. In the seminal plasma of O. mykiss, the main FAAs were arginine, glutamic acid, isoleucine, leucine, methionine and proline, in spermatozoa cysteine, arginine and methionine. In the seminal plasma of C. carpio, the main FAAs were alanine, arginine, cysteine, glutamic acid, histidine, leucine, lysine, methionine and proline, in spermatozoa arginine, glutamic acid, histidine, leucine and lysine. When spermatozoa were incubated for 48 h together with the seminal plasma, the quantitative amino acid pattern changed in both species indicating their metabolism. In spermatozoa and seminal plasma of O. mykiss and C. carpio, the following enzymes were found to be related to amino acid metabolism: transaminases (specific for alanine, aspartate, isoleucine and leucine), decarboxylases (specific for valine and lysine), glutamate dehydrogenase and α‐keto acid dehydrogenases (substrates: 3‐methyl‐2‐oxovaleric acid and 4‐methyl‐2‐oxovalerate). These data demonstrate that amino acid catabolism by transamination, decarboxylation and oxidative deamination can occur in semen of the two species. Also activity of methionine sulphoxide reductase was detected, an enzyme which reduces methionine sulphoxide to methionine. This reaction plays an important role in antioxidant defence. To determine the effect of FAAs on the sperm viability, C. carpio and O. mykiss spermatozoa were incubated in sperm motility inhibiting saline solution containing different amino acids. Methionine had a positive effect on the sperm viability in both species. Taken together this result with the in vivo occurrence of methionine and of methionine reductase in semen, it can be assumed that this amino acid plays an important role in antioxidant defence. Also isoleucine in O. mykiss and leucine in C. carpio had a positive effect on sperm viability. As seminal plasma and spermatozoa of the two species exhibit enzyme activities to catabolize leucine and isoleucine, they might serve as additional energy resources especially during prolonged incubation and storage periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号