首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of ICI 164,384 on the expression of six oestrogen-regulated RNAs (pNR-1, pNR-2, pNR-13, pNR-17, pNR-25 and pNR-100) and the 46 kDa secreted protein were measured in MCF-7 cells. In marked contrast to tamoxifen, an antioestrogen commonly used in the treatment of breast cancer, ICI 164,384 administered alone had little or no effect on the RNAs or protein. ICI 164,384 completely inhibited the induction of the RNAs and 46 kDa protein by oestradiol. Although ICI 164,384 has an affinity for the human oestrogen receptor only slightly less than that of oestradiol, half maximal inhibition of oestradiol action was attained with between a 50 and 150-fold molar excess of ICI 164,384. The pNR-1 RNA is induced by tamoxifen but this induction was abolished by ICI 164,384. Thus, ICI 164,384 acts as a potent antioestrogen for the regulation of the expression of specific oestrogen-responsive genes in human breast cancer cells.  相似文献   

2.
The EFM-19 cell line is a new breast cancer cell line whose proliferation has been reported to be stimulated by oestrogens and inhibited by the antioestrogen tamoxifen. Oestrogen receptor mRNA levels are higher in EFM-19 cells than in other oestrogen-responsive cell lines. The levels of four oestrogen-inducible RNAs [pNR-1, pNR-2, pNR-25 and pNR-100] were measured in EFM-19 cells. Oestradiol treatment increased the levels of the four regulated RNAs between 3-fold (pNR-100) and greater than 100-fold (pNR-2). The induction was half maximal between 1.5 x 10(-11) and 1.5 x 10(-10) M oestradiol. The effects of two antioestrogens, tamoxifen and LY117018, were measured on the expression of the oestrogen-regulated RNAs. Tamoxifen was a partial oestrogen agonist for the induction of the pNR-1 and pNR-25 RNAs but had very little effect on the pNR-2 and pNR-100 RNA levels. The pNR-2 RNA levels were less induced by tamoxifen in EFM-19 cells than in MCF-7 cells. LY117018 did not increase the levels of any RNA. The oestrogen-induced levels of the four RNAs were reduced by both antioestrogens to the RNA levels present in cells treated with the antioestrogens alone. LY117018 was at least 100-fold more potent than tamoxifen as an oestrogen antagonist.  相似文献   

3.
4.
Two cDNA libraries have been constructed with RNA prepared from the estrogen-responsive breast cancer cell lines, MCF7 and ZR 75. They were screened by differential hybridization for estrogen-regulated sequences. A total of 11 different RNAs were isolated from the MCF7 cell cDNA library and four from the ZR 75 cell cDNA library. Only two sequences were isolated from both libraries. The levels of the 13 different RNAs are induced between 2.5- and 100-fold by estrogen in MCF7 cells. The expression and regulation by estrogen of the RNAs was examined in eight different human tumor cell lines. The relative abundance of each RNA varied in the different cell lines. The expression of three RNAs (pNR-1, pNR-2, and pNR-25) was detected only in estrogen-responsive breast cancer cells. The sequences that were expressed in all eight cell lines were regulated by estrogen only in the three estrogen-responsive breast cancer cell lines. The response of the RNAs to other classes of steroids and to different concentrations of estrogen was characterized in more detail. The extent to which different concentrations of estradiol induced each RNA varied, but half-maximal induction of most of the RNAs occurred between 2 and 5 X 10(-11) M. The time at which increased RNA levels were first detected following exposure to estradiol also varied. Estrogen increased the levels of some RNAs within 15 min, while for others there was a lag of 4 h.  相似文献   

5.
R-27 cells, a tamoxifen-resistant clone of MCF-7 mammary cancer cells, were used to study the effect of tamoxifen and its derivatives (4-hydroxytamoxifen, N-desmethyltamoxifen and cis-tamoxifen) on the conversion of estrone sulfate to estradiol. The present data indicate that (1) tamoxifen, 4-hydroxytamoxifen, N-desmethyltamoxifen and cis-tamoxifen inhibit the uptake of the radioactivity after incubation of these triphenylethylene derivatives with [3H]-estrone sulfate; (2) there is a significant decrease of the conversion of estrone sulfate to estradiol by these antiestrogens; (3) the concentrations of estradiol (cytosol + 0.6 M KCl nuclear extract) which are 293 +/- 50 pg/mg DNA in the control studies (estrone sulfate alone), diminish to 26 +/- 5 pg/mg DNA after addition of tamoxifen, to 9 +/- 2 with 4-hydroxytamoxifen, to 24 +/- 7 with N-desmethyltamoxifen and to 32 +/- 6 with cis-tamoxifen. It is concluded that estrone sulfate can play an important role in the biological responses to estrogens in this breast cancer cell line and tamoxifen and its derivatives block the conversion of estrone sulfate to estradiol. The decrease in concentration of estradiol could be explained by the presence of the estrogen receptor system but other ways of the action of antiestrogens remain to be explored.  相似文献   

6.
Two monoclonal antibodies (D547 and H222), obtained against the estrogen receptor from MCF-7 breast cancer cells, were used to study the estrogen receptor from fetal guinea-pig uterus bound to estradiol or to the antiestrogens tamoxifen and 4-hydroxytamoxifen. The estradiol-receptor complex binds partially to the monoclonal antibody D547, shifting its sedimentation coefficient in high salt sucrose density gradients from 4.5S to 7.5S. Recently, we demonstrated that the form selectively recognized by this monoclonal antibody is the activated form of the receptor. The estrogen receptor complexed with tamoxifen or 4-hydroxytamoxifen is also partially recognized by this monoclonal antibody but the fraction of total receptor bound to the antibody is significantly less than for the receptor complexed with estradiol. Another series of experiments showed that the monoclonal antibody H222, which recognizes a different antigenic site on the receptor molecule, binds all the estradiol-receptor complex (independently of the degree of activation), shifting its sedimentation coefficient to 7.5S. However, even if all the 4-hydroxytamoxifen-receptor complex is bound by this antibody, only a fraction of the receptor is recognized when it is complexed with tamoxifen. These data show different interactions between the estradiol-, tamoxifen- and 4-hydroxytamoxifen-receptor complexes and the two monoclonal antibodies tested and suggest that these compounds induce different conformational modifications of the estrogen receptor molecule.  相似文献   

7.
The triphenylethylene antiestrogens are very potent antagonists of estrogen action in the chicken and manifest little agonist activity compared to their action in other species. The estrogen antagonism is most probably mediated by the estrogen receptor, to which tamoxifen binds with a Ki of 2.6 nM. Tamoxifen is readily metabolized by liver to 4-hydroxytamoxifen, which binds the liver nuclear estrogen receptor with a Ki of 0.1 nM. The Kd of the receptor is 0.7 nM. Estrogen receptor concentrations in liver from immature chickens are relatively low both in nuclear and cytosol fractions. Treatment with estradiol results in 10-fold up-regulation of the nuclear levels to give a total receptor concentration of about 2 pmol/g tissue. Tamoxifen can promote this up-regulation to a limited extent, but interpretation of experimental results is compromised by difficulties with exchange assays in the face of the very high binding affinity of 4-hydroxytamoxifen. Tamoxifen also binds with high affinity (Kd 2-4 nM) and distinctive specificity to antiestrogen binding sites (AEBS) present in a wide variety of chicken tissues and in the highest concentration in the liver (800 pmol/g tissue). Liver and serum contain ether-soluble components which can compete for binding of [3H]tamoxifen to the AEBS. The serum AEBS inhibitory activity is chromatographically heterogeneous and is associated with a sterol-like fraction as well as with a fatty-acid-containing fraction. Tamoxifen treatment of cockerels results in dose- and time-dependent decreases in serum free and esterified cholesterol, and in phospholipids and triglycerides. These changes may reflect estrogen-receptor-independent interactions of tamoxifen.  相似文献   

8.
9.
The anti-estrogenic substance tamoxifen is effective in the adjuvant therapy applied in human breast cancer. Since it partly exhibits estrogenic activity and has serious side-effects, however, pure anti-estrogenic compounds are being sought. In our experimental study, we compared the anti-proliferative effect of estradiol and 13 endogenous estradiol metabolites on human breast cancer cells with the effect of tamoxifen. We used MCF-7 and MDA-MB 231, the well-established estrogen receptor-positive and -negative cell lines. 4-hydroxytamoxifen, the active metabolite of tamoxifen, estradiol and 13 estradiol metabolites were tested in concentrations ranging from 3.1 to 100 microM. Incubation time was 4 days and cell proliferation was measured by means of the ATP chemosensitivity test. 4-hydroxytamoxifen showed an IC50 value of 27 microM and 18 microM in MCF-7 and MDA-MB 231 cells, respectively. Estradiol and its metabolites were anti-proliferative in both cell lines. A few A-ring metabolites were more effective in inhibiting cell proliferation than D-ring metabolites and the parent substance 17beta-estradiol. 4-OHE1, 2-MeOE1 and 2-MeOE2 were as effective in both cell lines as tamoxifen. For the first time it has been demonstrated that endogenous estradiol metabolites are equally anti-proliferative as tamoxifen in the context of human breast cancer cells. Since some of these metabolites exhibit no estrogenic activity, they are likely to be valuable in clinical studies of chemoprevention and adjuvant therapy of breast cancer.  相似文献   

10.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. The mechanism underlying the increased proliferation could involve the induction of components of the insulin-like growth factor signal transduction pathway by estrogen. In this study we have examined the regulation of the expression of insulin receptor substrate-1, a major intracellular substrate of the type I insulin-like growth factor receptor tyrosine kinase. Estradiol increased insulin receptor substrate-1 mRNA and protein levels at concentrations consistent with a mechanism involving the estrogen receptor. Insulin receptor substrate-1 was not induced significantly by the antiestrogens tamoxifen and ICI 182,780, but they inhibited the induction of insulin receptor substrate-1 by estradiol. Analysis of tyrosine-phosphorylated insulin receptor substrate-1 showed that the highest levels were found in cells stimulated by estradiol and insulin-like growth factor-I, whereas low levels were found in the absence of estradiol irrespective of whether type I insulin-like growth factor ligands were present. Insulin receptor substrate-2, -3, and -4 were not induced by estradiol. These results suggest that estrogens and antiestrogens may regulate cell proliferation by controlling insulin receptor substrate-1 expression, thereby amplifying or attenuating signaling through the insulin-like growth factor signal transduction pathway.  相似文献   

11.
Size-exclusion high-performance liquid chromatography was used to characterize the hydrodynamic molecular properties of estrogen receptors complexed with estradiol and the antiestrogen 4-hydroxytamoxifen. Cytoplasmic estrogen receptors complexed with [3H]-4-hydroxytamoxifen did not undergo reductions in hydrodynamic size after exposure to KCl or urea. Nuclear receptors complexed with 4-hydroxytamoxifen eluted as hydrodynamically larger molecules than nuclear receptors complexed with estradiol. Because identical hydrodynamic characterizations were obtained with the covalent ligand [3H]tamoxifen aziridine, these differences in chromatographic behavior are due to differences in ligand-mediated receptor properties and are not the result of ligand dissociation. When estrogen receptors, complexed with either [3H]estradiol or [3H]-4-hydroxytamoxifen, were exposed to trypsin, the receptors complexed with 4-hydroxytamoxifen eluted as larger hydrodynamic forms than receptors complexed with estradiol. These observations are interpreted to indicate that estradiol and 4-hydroxytamoxifen mediate contrasting transitions in the molecular orientation of estrogen receptors. The consequences of the transitions mediated by 4-hydroxytamoxifen appear to be that intermolecular associations become difficult to disrupt with KCl or urea and that the accessibility of trypsin-sensitive proteolytic sites becomes altered. Chromatin fractionation using DNase I and hypotonic Mg2+ solubilization identified a chromatin region that was less readily penetrated by receptors complexed with 4-hydroxytamoxifen than receptors complexed with estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We studied the growth inhibitory effects of DL-alpha-difluoromethylornithine, and antiestrogens (tamoxifen, 4-hydroxytamoxifen, trioxifene, keoxifene, and LY117018) as single agents and in combinations on the proliferation of a breast cancer cell line, MCF-7. At 0.1 mM difluoromethylornithine, the proliferation of MCF-7 cells was inhibited to 75 +/- 6% of the controls. Treatment of the cells with 0.1 microM 4-hydroxytamoxifen reduced cell growth to 72 +/- 4%. Combination of 0.1 mM difluoromethylornithine and 0.1 microM 4-hydroxytamoxifen reduced cell growth to 38 +/- 5%, indicating additive growth inhibitory effects. Similar additive effects were observed with all 5 antiestrogens in combination with difluoromethylornithine.  相似文献   

13.
Ovariectomized athymic (nude) mice were inoculated (10(7) cells) with the breast cancer cell line, MCF-7, into the axillary mammary fat pads. Tumors did not grow unless animals were implanted with a 1.7 mg estradiol sustained (8-week)-release cholesterol pellet. Co-implantation with tamoxifen (5 mg, 4-week release) caused an inhibition of estradiol-stimulated growth but did not cause tumor growth when implanted alone. The metabolism of [3H]tamoxifen was determined in the athymic mouse bearing MCF-7 tumors. Metabolites in the liver, uterus and tumor were determined by TLC. The principal metabolite in each of the tissues was 4-hydroxytamoxifen (by comparison of Rfs with authentic standards). Studies with 4-hydroxytamoxifen and N-desmethyltamoxifen (the principal metabolites in patients) showed that each was effective in inhibiting estradiol-stimulated tumor growth. However, tumor growth could be reactivated by treatment with estradiol alone. In a separate experiment, tumor-implanted animals were treated with tamoxifen for 1, 2 and 6 months. Tamoxifen did not cause tumor growth. Nevertheless, tumor growth was reactivated by estradiol on each occasion. These studies confirm the tumoristatic actions of tamoxifen and strongly support the view that therapy must be given indefinitely to patients to control tumor recurrence. The athymic mouse model can be used in the future to determine the efficacy of novel antiestrogens and the development of antiestrogen drug resistance.  相似文献   

14.
These experiments utilized the estrogen antagonists CI-628, nafoxidine, and tamoxifen as tools to investigate potential molecular mechanisms of estrogen activation of female rat sexual behavior. Adult female rats, ovariectomized 4–7 days previously and matched for body weight, were administered single sc injections of one of the three antiestrogens, and the ability of the antagonists to block estrogen-induced sexual behavior, to deplete and replenish hypothalamic estrogen receptors, and to inhibit the binding of estradiol by hypothalamic nuclei 2 hr, or 1, 2, 4, or 7 days later was assessed. All three compounds produced a dose- and time-dependent inhibition of estrogen-activated lordosis, with tamoxifen being the most potent inhibitor. The three antiestrogens also caused prolonged depletion of hypothalamic estrogen receptors, but there was no correlation between receptor levels and the degree of inhibition of lordosis behavior at any time point following antiestrogen treatment. Rats showed high levels of sexual receptivity when antiestrogens were injected 2, 4, or 7 days before estrogen; however, hypothalamic estrogen receptors were still markedly (up to 70%) reduced at some of these time points. In contrast, there was a large (r = 0.67), significant correlation between the ability of all three agents to reduce [3H]estradiol binding by brain cell nuclei and their ability to reduce the display of estrogen-induced female sexual behavior. Antiestrogen injections which inhibited lordosis always decreased the level of specific estradiol binding by hypothalamic nuclei. These data indicate that delayed receptor replenishment does not adequately explain the antagonism of lordosis behavior by antiestrogens. The results presented here strongly point to the cell nucleus as the critical locus of receptor-mediated interactions which underlie estrogen and antiestrogen regulation of female sexual behavior.  相似文献   

15.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

16.
17.
Analysis of the interactions of two synthetic estrogen antagonists, tamoxifen and CI 628, with rat uterine and chick oviduct cytosol revealed significant differences in the antiestrogen binding properties of these tissues. In the rat uterus CI 628, tamoxifen and estradiol were bound to a similar number of saturable binding sites and estradiol could completely inhibit the binding of tritiated antiestrogens to these sites. In contrast, high affinity, saturable antiestrogen binding sites in chick oviduct were present at three times the concentration of estradiol binding sites and estradiol could only partially inhibit the binding of tritiated antiestrogens to these sites. It is concluded that antiestrogens bind to the estrogen receptor in both tissues and that chick oviduct has an additional saturable antiestrogen binding site distinct from the classical estrogen receptor site.  相似文献   

18.
The antiestrogens tamoxifen and monohydroxytamoxifen inhibited the estradiol-stimulated increase in prolactin synthesis by dispersed cells in culture derived from immature rat pituitary glands. Monohydroxytamoxifen had a relative binding affinity for the estrogen receptor similar to that of estradiol, whereas tamoxifen's relative binding affinity was approximately 3%. This was consistent with the observation that monohydroxytamoxifen was 30 times more potent than tamoxifen as an antiestrogen in vitro. To avoid the possibility that tamoxifen was fractionally metabolized to monohydroxytamoxifen by the pituitary cells, the p-methyl, p-chloro, and p-fluoro derivatives of tamoxifen that are unlikely to be converted to monohydroxytamoxifen were tested for activity. The substitution did not have a detrimental effect on their ability to inhibit the binding of [3H]estradiol to either rat uterine or pituitary gland estrogen receptors. Similarly, the derivatives of tamoxifen inhibited estradiol-stimulated prolactin synthesis at concentrations that were consistent with their relative binding affinities. Although it is clearly an advantage for tamoxifen to be metabolized to the more potent antiestrogen monohydroxytamoxifen, we have shown that this is not a prerequisite for the antiestrogenic actions of tamoxifen. With the direct actions of antiestrogens established, the pituitary cell system was validated for further structure-activity relationship studies. Overall, the inhibition of estradiol-stimulated prolactin synthesis by antiestrogens is competitive and reversible with estradiol, an effect that can be explained by interactions with the estrogen receptor system.  相似文献   

19.
We have examined the effects of reversibly and irreversibly binding estrogenic and antiestrogenic ligands for the estrogen receptor on pS2 RNA accumulation in MCF-7 human breast cancer cells and on pS2-chloramphenicol acetyl transferase (CAT) fusion gene expression in transfected MCF-7 cells. In MCF-7 cells grown in the absence of estrogens, the reversibly binding estrogen, estradiol, and the affinity labeling estrogen, ketononestrol aziridine, KNA, evoked a 13-fold increase in pS2 RNA level. The reversibly binding antiestrogen trans-hydroxytamoxifen and the affinity labeling antiestrogens tamoxifen aziridine or desmethylnafoxidine aziridine behaved as partial agonists/antagonists. In thymidine kinase-chloramphenicol acetyltransferase (tk-CAT) fusion genes containing a 1000 base pair fragment of the pS2 5'-flanking region encompassing the estrogen responsive element of the gene [pS2 (-1100/-90) tk-CAT], estradiol and ketononestrol aziridine evoked a marked stimulation of CAT activity and, in transfected cells grown in both the presence or absence of the weak estrogen phenol red, the antiestrogens behaved as partial agonists/antagonists. This pS2 5'-flanking region displayed both estrogen-dependent and estrogen-independent enhancer activity as monitored by stimulation of CAT activity. Hormonal regulation of the transfected pS2 fusion gene was similar to that observed in the native pS2 gene of MCF-7 cells; however, antiestrogens, while still partial agonists-antagonists, were relatively more agonistic on the transfected fusion gene than on the native gene. One antiestrogen (ICI 164,384) that behaved as a pure estrogen antagonist on the native gene was a partial agonist-antagonist of pS2 gene expression in the plasmid. This study illustrates that the hormonal regulation of the pS2 gene, as characterized by the agonist-antagonist balance of estrogens and antiestrogens, is influenced by the DNA context of the pS2 estrogen responsive element. Also, the fact that estrogens and antiestrogens that form covalent bonds with the estrogen receptor modulate activity of the native pS2 gene and the pS2-tk-CAT fusion gene in a manner similar to that of their reversibly binding counterparts suggests that it may be possible to use these irreversibly binding ligands to follow the interaction of hormone-receptor complexes with regions regulating estrogenic stimulation of the pS2 gene.  相似文献   

20.
Inhibition of aromatase: insights from recent studies   总被引:3,自引:0,他引:3  
Santen RJ 《Steroids》2003,68(7-8):559-567
Aromatase is the rate limiting enzyme that catalyzes the conversion of androgens to estrogens. Blockade of this step allows treatment of diseases that are dependent upon estrogen. Over the past two decades, highly potent and specific aromatase inhibitors have been developed which block total body aromatization by over 99%. An important recent question is whether aromatase inhibitors are superior to the antiestrogens for treatment of hormone-dependent breast cancer. The third generation aromatase inhibitors have been compared to tamoxifen for the treatment of breast cancer in the advanced, adjuvant, and neoadjuvant settings. All of these studies suggest the superiority of aromatase inhibitors over tamoxifen. The mechanism responsible for the superiority of the aromatase inhibitors relates to the estrogen agonistic effects of tamoxifen. During exposure to estrogen deprived conditions and to tamoxifen, breast cancer cells adapt and upregulate the MAP kinase and PI-3 kinase pathways. These growth factor signaling pathways potentiate the estrogen agonistic properties of tamoxifen. Data from a large adjuvant therapy trial (ATAC trial) provide evidence that the aromatase inhibitors may also be superior for breast cancer prevention. The mechanism for superiority in this setting probably relates to the genotoxic effects of estradiol metabolites. The aromatase inhibitors may be also useful for the treatment of endometriosis and for ovulation induction as evidenced by preliminary data. The recent advances in development of the aromatase inhibitors clearly demonstrate the utility of these agents for treatment of breast cancer and potentially for other indications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号