首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord.The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract.Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.  相似文献   

2.
The mesencephalic V neurons and tectobulbar axons in chick embryo project over long distances that appear during the early development of the chick optic tectum. The mesencephalic V neuron and tectobulbar axonal growth begin at Hamburger and Hamilton stage 14 and stage 18, respectively. Both fibers proceed downward from the dorsal to the ventral side of the lateral wall of the optic tectum and then turn caudally and join the medial longitudinal fasciculus. Their axons appear in the most superficial layer of the tectum at early stages and do not cross the dorsal midline of the tectum. Here, we report the role of draxin, a recently identified axon guidance protein, in the formation of the ventrally directed tectum axonal tracts in chicken embryo. draxin is expressed in a high dorsal to low ventral gradient in chick optic tectum. In vitro experiments show that draxin repels neurite outgrowth from dorsal tectum explants. In vivo overexpression resulted in inhibition or misrouting of axon growth in the tectum. Therefore, draxin may be an important member of the collection of repulsive guidance molecules that regulate the formation of the ventrally directed tectum axon tracts.  相似文献   

3.
S Kr?ger  J Walter 《Neuron》1991,6(2):291-303
During embryonic development of the avian optic tectum, retinal and tectobulbar axons form an orthogonal array of nerve processes. Growing axons of both tracts are transiently very closely apposed to each other. Despite this spatial proximity, axons from the two pathways do not intermix, but instead restrict their growth to defined areas, thus forming two separate plexiform layers, the stratum opticum and the stratum album centrale. In this study we present experimental evidence indicating that the following three mechanisms might play a role in segregating both axonal populations: Retinal and tectobulbar axons differ in their ability to use the extracellular matrix protein laminin as a substrate for axonal elongation; the environment in the optic tectum is generally permissive for retinal axons, but is specifically nonpermissive for tectobulbar axons, resulting in a strong fasciculation of the latter; and growth cones of temporal retinal axons are reversibly inhibited in their motility by direct contact with the tectobulbar axon's membrane.  相似文献   

4.
Summary The retinal projections inEsox niger, as determined with the aid of a modified cobalt-lysine method, are considerably more extensive in the diencephalon and pretectum than in other teleost fishes so far examined. Although most retinal axons terminate contralaterally, rare fibers can be traced to the same aggregates ipsilaterally. The retinohypothalamic projection appears larger than hitherto reported in teleosts, and the dorsomedial optic tract issues fibers to a series of cell clusters extending from the rostral thalamus to mid-torus levels. A retinal projection to a presumed ventrolateral optic nucleus (VLO) is described for the first time in a teleost. Other targets of retinal fibers include the nucleus geniculatus lateralis ipse of Meader (GLI), the pretectal nucleus (P), the cortical nucleus and a well-developed ventromedial optic nucleus (VMO). The projection to the optic tectum is principally to the stratum fibrosum et griseum superficiale (SFGS) and stratum marginale (SM), but a considerable number of axons also course through the stratum album centrale (SAC) before terminating there or piercing the stratum griseum centrale (SGC) and terminating in SFGS. Rare terminal arborizations of retinal fibers were also observed in stratum griseum centrale (SGS) and in the stratum griseum periventriculare (SGC) in restricted portions of the tectum. Because of the relatively large size of the visual structures inE. niger it is a potentially useful model for future experimental studies on the visual system.  相似文献   

5.
郑磊  刘再群  宋海燕 《四川动物》2012,31(3):373-377
用免疫组化SABC法研究白介素-1α(IL-1α)、干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α)和神经生长因子-β(NGF-β)在胚胎后期皖西白鹅中脑的表达与分布,并作统计学处理。结果发现,中央灰质层、中央白质层、室周灰质纤维层、半圆丘、峡核细胞胞质与突起阳性反应明显,其中峡核阳性反应最为明显,顶盖最不明显,且峡核大细胞部纤维着色明显;IL-1α在4种细胞因子中分布范围最广,阳性反应最强;IFN-γ与TNF-α阳性反应中,部分树突着色明显,且IFN-γ染色效果强于TNF-α;NGF-β的阳性突起与纤维较少。由结果可得,细胞因子可能是通过峡核-顶盖通路的作用,由峡核传递到顶盖;IL-1α在中枢神经系统中有重要作用;IFN-γ作为中枢神经系统介质的作用强于TNF-α。  相似文献   

6.
Summary The retinal efferents of the catfish, Mystus vittatus, were investigated with the use of the horseradish peroxidase (HRP) technique. Most retinal fibres extended contralateral to the eye that had received HRP label, while a few fascicles projected to the ipsilateral side without decussation in the optic chiasma. The contralateral fibres projected to the suprachiasmatic nucleus, the nucleus opticus dorsolateralis, the nucleus of the posterior commissure, the nucleus geniculatus lateralis, pretectal nuclear complex, and to two layers of the optic tectum, i.e., stratum fibrosum et griseum superficiale and stratum griseum centrale. The accessory optic tract arose from the inner area of the optic tract and extended ventromedially to the accessory optic nucleus. The ipsilateral fascicles projected to almost all the above mentioned nuclei, but these projections were comparatively sparse. The ipsilateral retinal projection was restricted to the rostral tectum.  相似文献   

7.
Summary The posterior lateral-line lobe, contrary to present belief, projects bilaterally to the torus semicircularis, although the contralateral projection is considerably more extensive. The torus also receives bilateral inputs from the medial octavo-lateralis nuclear complex, the reticular formation, a sublemniscal nucleus, and the nucleus prae-eminentialis. Unilateral inputs to the torus were found originating from the ipsilateral mesencephalic tectum and the contralateral lobus caudalis of the cerebellum. Extensive commissural systems between the right and left torus are also described for the first time.  相似文献   

8.
Summary Using the ABC immunohistochemical method, we investigated the distribution of calbindinlike immunoreactive structures in the optic tectum of normal fish, Tinca tinca, and from normal and unilaterally eye-enucleated fish, Cyprinus carpio. In nonoperated individuals of both species the optic tectum contained numerous immunoreactive neurons with strongly positive somata located in the stratum periventriculare and a thick immunolabeled dendritic shaft ascending radially toward the stratum fibrosum et griseum superficiale. The retinorecipient layers contained many fibrous immunoreactive structures. Some varicose fibers, isolated or in small bundles, were localized to the stratum album centrale, especially in the dorsal tectal half. Unilateral eye removal produced the disappearance of the immunoreactive fibrous structures located in the retinorecipient layers of the tectum contralateral to the enucleation. The present work shows that calbindinlike immunoreactive substances are localized in specific neural circuits of the fish optic tectum and suggests that the calbindin-like immunoreactive fibers in the retinorecipient strata are of retinal origin.  相似文献   

9.
Summary Immunocytochemistry using antibodies against Met-enkephalin and Leu-enkephalin has demonstrated a group of large enkephalin-immunoreactive neurons in the nucleus of the rostral mesencephalic tegmentum (mRMT) of two teleost fish, Salmo gairdneri and Salmo salar. Injections of cobalt-lysine in the medial optic tectum retrogradely labeled the above group of tegmental neurons. Tegmental neurons were labeled only ipsilaterally to the injection site. This indicates that enkephalinergic neurons in the nRMT project to the optic tectum, and that at least some of the enkephalinergic axons observed in the optic tectum belong to a tegmento-tectal pathway. Comparable enkephalinergic pathways have been described in reptiles and birds, where pretectal-mesencephalic nuclei contribute to the enkephalin-containing fibers that project to the optic tectum.  相似文献   

10.
The afferent connections to the abducent nucleus in the cat were studied by means of retrograde transport of WGA-HRP after implantations of the tracer in crystalline form. Retrogradely labelled cells were found bilaterally in the medial and descending vestibular nuclei, mainly in their ventral and medial portions, in the rostral part of the ipsilateral gigantocellular reticular nucleus, in the medial part of the contralateral caudal pontine reticular nucleus and bilaterally in the oculomotor nucleus, mainly in its dorsolateral division. Some labelled cells were also found bilaterally in the mesencephalic reticular formation, the periaqueductal grey and the nucleus of the trapezoid body.  相似文献   

11.
Summary Horseradish peroxidase was injected unilaterally into the optic tectum of the channel catfish, Ictalurus punctatus. The sources of tectal afferents were thereby revealed by retrogradely labeled neurons in various brain centers. Retrogradely labeled cells were seen in both the ipsilateral and contralateral telencephalon. The superficial pretectal area was labeled on both sides of the brain. Ipsilateral projections were also observed coming from the entopeduncular nucleus. Both the anterior thalamic nucleus and the ventro-medial thalamic nucleus projected to the ipsilateral optic tectum. Cells in the ipsilateral nucleus of the posterior commissure were seen to project to the tectum. Labeled fibers were visualized in the lateral geniculate nucleus ipsilateral to the injected tectum, however, no labeled cell bodies were observed. Therefore, tectal cells project to the lateral geniculate nucleus, but this projection is not reciprocal. No labeled cells were found in the cerebellum. Labeled cells occurred in both the ipsilateral and contralateral medial reticular formation; they were also observed in the ipsilateral nucleus isthmi. A projection was seen coming from the dorsal funicular nucleus. Furthermore, labeled cells were shown in the inferior raphe nucleus.Abbreviations AP Area pretectalis - C Cerebellum - DPTN Dorsal posterior tegmental nucleus - H Habenula - IRF Inferior reticular formation - LI Inferior lobe - LGN Lateral geniculate nucleus - LR Lateral recess - MB Mammillary body - MRF Medial reticular formation - MZ Medial zone of the telencephalon - NC Nucleus corticalis - NDL-M Nucleus opticus dorsolateralis/pars medialis - NI Nucleus isthmi - NPC Nucleus of the posterior commissure - OPT Optic tectum - OT Optic tract - PC Posterior commissure - PN Pineal organ - PrOP Preoptic nucleus - PT Pretectum - TBt Tectobulbar tract - TEL Telencephalon - TL Torus longitudinalis - TS Torus semicircularis - VC Valvula cerebelli - VLTN Ventrolateral thalamic nucleus - VMTN Ventromedial thalamic nucleus  相似文献   

12.
The cobalt-labelling technique was used to investigate the termination areas of trigeminal primary afferent fibers. The familiar somatotopic arrangement of fibers and terminals of the three divisions of the trigeminal nerve was recognized both in the spinal tract and in the nuclear complex of the trigeminus. The spinal tract could be traced as far as the 3rd cervical segment of the spinal cord where fibers crossed to the contralateral side. The different divisions of the nuclear complex could be unambiguously defined on the basis of the pattern of fiber terminations. The nucleus principalis was characterized by the even distribution of terminals in the nucleus. The nucleus spinalis was characterized by small bundles of fibers of intranuclear origin, which broke up the even distribution pattern of terminals. The presence of mesencephalic trigeminal fibers in the nucleus oralis distinguished this nucleus from the nucleus interpolaris. The nucleus caudalis was recognized on the ground of its striated structure. Primary trigeminal afferent fibers were located in the following sites: in the solitary nucleus, in the lateral part of the reticular formation, in the dorsal-column nuclei and in the superior vestibular nuclei. Primary fiber terminations could not be observed in the cerebellum.  相似文献   

13.
Glycogen phosphorylase (GP) and cytochrome oxidase (CO) activities were mapped histochemically in the brain of the turtle Trachemys dorbigni. In the telencephalon, both activities occurred in the olfactory bulb, in all cortical areas, in the dorsal ventricular ridge, striatum, primordium hippocampi and olfactory tubercle. In the diencephalon, they were identified in some areas of the hypothalamus, and in rotundus and geniculate nuclei. Both reactions were detected in the oculomotor, trochlear, mesencephalic trigeminal nuclei, the nucleus of the posterior commissure, torus semicircularis, substantia nigra and ruber and isthmic nuclei of the mesencephalon. In all layers of the optic tectum GP activity was found, but CO only labelled the stratum griseum centrale. In the medulla oblonga both enzymes appear in the reticular, raphe and vestibular nuclei, locus coeruleus and nuclei of cranial nerves. In the cerebellum, the granular and molecular layers, and the deep cerebellar nuclei were positive for both enzymes. The Purkinje cells were only reactive for CO. In the spinal cord, motor and commissural neurones exhibited a positive reaction for the two enzymes. However, CO also occurred in the marginal nucleus and in the lateral funiculus. These results may be useful as a basis for subsequent studies on turtle brain metabolism.  相似文献   

14.
We determined the cellular localization of an endogenous lectin at various times during the development of a well-characterized region of chick brain, the optic tectum. This lectin is a carbohydrate-binding protein that interacts with lactose and other saccharides, undergoes striking changes in specific activity with development, and has previously been purified by affinity chromatography from extracts of embryonic chick brain and muscle. Cellular localization in the tectum was done by indirect immunofluoresecent staining, using immunoglobulin G derived from an antiserum raised against pure lectin. No lectin was detectable in the optic tectum examined at 5 days of embryonic development. From approximately 7 days of development, neuronal cell bodies and fibers were labeled by the antibody; and extracts of tectum contained hemagglutination activity that could be inhibited by lactose or by the antiserum. Lectin remained present in many tectal neuronal layers after hatching; but in 2-month-old chicks it was sparse or absent in most of the tectum except for prominent labeling of fibers in the stratum album centrale. The initial appearance of lectin in the optic tectum was not dependent on innervation by optic nerve fibers since bilateral enucleation during embryogenesis did not affect it. Lectin was detectable on the surface of embryonic optic tectal neurons dissociated with a buffer containing EDTA.  相似文献   

15.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

16.
Summary Retinofugal and retinopetal projections were investigated in the teleost fish Channa micropeltes (Channiformes) by means of the cobaltous lysine and horseradish peroxidase (HRP) tracing techniques. Retinofugal fibers cross completely in the optic chiasma. A conspicious lamination is present in those parts of the optic tract that give rise to the marginal branches of the optic tract. This layering of optic fibers continues in the marginal branches to mesencephalic levels. Retinal projections to the preoptic and hypothalamic regions are sparse; they are more pronounced in the area of pretectal nuclei. The medial pretectal complex and the cortical pretectal nucleus are more fully differentiated than in other teleostean species. Further targets include the thalamus and the optic tectum. The course of major optic sub-tracts and smaller fascicles is described. Retinopetal neurons are located contralaterally in a rostral and a caudal part of the nucleus olfactoretinalis, and in a circumscribed nucleus thalamoretinalis. The present findings are compared with reports on other teleost species.  相似文献   

17.
Cholinergic systems in the midbrain of the eel were identified by using histochemical procedures for the demonstration of the enzymes choline acetyltransferase (ChAT) and acetylcholinesterase. Neurons detected by both methods are located in the stratum periventriculare of the tectum, cranial motor nuclei III and IV, nucleus isthmi, nucleus gustatorius secundarius, nucleus reticularis superior, and nucleus lateralis valvulae. Some projections of these cell groups were studied by injecting horseradish peroxidase into selected brain regions. Cholinergic neurons make up about 10% of the neurons in the stratum periventriculare of the tectum and are a subset of the type-XIV neurons. Neurons in n. isthmi project primarily to the ipsilateral tectum; some cholinergic isthmal neurons project to n. pretectalis superficialis. A few ChAT-positive axons, perhaps belonging to the tectopetal system, were observed in the optic nerve. The cholinergic neurons of n. gustatorius secundarious project to the inferior lobes of the hypothalamus. The neurons of the superior reticular nucleus are a cholinergic subset of the superior reticular formation. Their axons project rostrally, probably to the thalamus and pretectum. The findings are discussed in relation to functional features of the mesencephalon, particularly in relation to locomotory control.  相似文献   

18.
Summary The retinal projections in the tegu lizard were traced using degeneration-silver methods. Bilateral projections were found to the dorsolateral geniculate and the posterodorsal nuclei. Unilateral, crossed projections were traced to the suprachiasmatic nucleus, the ventrolateral geniculate nucleus, the mesencephalic lentiform nucleus, nucleus geniculatus praetectalis, the ectomammillary nucleus, and the optic tectum. Some of these connections are distinctly different from those reported in other reptiles and suggest that important interspecific variations occur among reptiles.  相似文献   

19.
The expression patterns of three microtubule-associated proteins (MAP1A, MAP1B, and MAP2A&B) were investigated in the developing optic tectum. Expression of MAP1B and middle-molecular-weight peptide of neurofilament (NF-M) was first observed in the same mesencephalic cells on day 3 of incubation, indicating that neuroblasts had been produced. At day 5, MAP1A and MAP2A&B expression appeared in the cellular layer containing the first neuroblasts that differentiate into large multipolar cells. The NF-M+ neurites in the striatum album centrale (SAC) and the striatum opticum (SO) were MAP1B+ up to day 19, but the intensity of MAP1B immunoreactivity decreased with development. All three MAPs were expressed in large multipolar neurons in the developing stratum griseum centrale from the beginning of maturation. Stratum griseum et fibrosum centrale cellular layers, containing radially arranged piriform neurons, were MAP1A/MAP2A&B on day 11 but became MAP1A+/MAP2A&B+ during later stages. These results suggest that the timing of MAP expression in neuronal maturation of large multipolar cells differs from that of piriform cells. The expression of MAPs has revealed specific cellular events in the developing optic tectum. Based on our observations, the development of the optic tectum can be divided into four periods.  相似文献   

20.
The problem of the direct retinohypothalamic projection in mammals (Moore, 1973) was reinvestigated in the laboratory mouse by electron microscopy and cobalt chloride-iontophoresis. The time-course of the axonal degeneration in the suprachiasmatic nucleus was studied 3, 6 and 12 h, 1, 2, 4, 6, 9 and 12 days after unilateral retinectomy. Specificity of the degenerative changes was controlled by investigation of the superficial layers of the superior colliculus. The ratio of crossed to uncrossed optic fibers could could be determined by counting degenerating structures (axons and terminals) in the optic chiasma and the ipsilateral and contralateral areas of the optic tract, the suprachiasmatic nucleus, and the superior colliculus. The number of degenerating axons in the suprachiasmatic nucleus showed a maximum one day after unilateral retinectomy and was, at all stages studied, two to three times higher in the contralateral than in the ipsilateral nuclear area. In the optic tract and in the superior colliculus the number of degenerating profiles was three times higher in the contralateral than in the ipsilateral area. Retinohypothalamic connections and crossing pattern of retinal fibers were studied light microscopically using impregnation with cobalt sulfide in whole mounts of brains. Most of the optic fibers in the laboratory mouse are crossed crossed (70-80%). A bundle of predominantly crossed optic fibers runs to the suprachiasmatic nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号