首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been reported that shifts in the fluorescence emission spectrum of the introduced tryptophans in the betaF155W mutant of Escherichia coli F(1) (bovine heart mitochondria F(1) residue number) can quantitatively distinguish between the number of catalytic sites occupied with ADP and ATP during steady-state ATP hydrolysis (Weber, J., Bowman, C., and Senior, A. E. (1996) J. Biol. Chem. 271, 18711--18718). In contrast, addition of MgADP, Mg-5'-adenylyl beta,gamma-imidophosphate (MgAMP-PNP), and MgATP in 1:1 ratios to the alpha(3)(betaF155W)(3)gamma subcomplex of thermophilic Bacillus PS3 F(1) (TF(1)) induced nearly identical blue shifts in the fluorescence emission maximum that was accompanied by quenching. Addition of 2 mm MgADP induced a slightly greater blue shift and a slight increase in intensity over those observed with 1:1 MgADP. However, addition of 2 mm MgAMP-PNP or MgATP induced a much greater blue shift and substantially enhanced fluorescence intensity over those observed in the presence of stoichiometric MgADP or MgAMP-PNP. It is clear from these results that the fluorescence spectrum of the introduced tryptophans in the betaF155W mutant of TF(1) does not respond in regular increments at any wavelength as catalytic sites are filled with nucleotides. The fluorescence spectrum observed after entrapping MgADP-fluoroaluminate complexes in two catalytic sites of the betaF155W subcomplex indicates that the fluorescence emission spectrum of the enzyme is maximally perturbed when nucleotides are bound to two catalytic sites. This finding is consistent with accumulating evidence suggesting that only two beta subunits in the alpha(3)beta(3)gamma subcomplex of TF(1) can simultaneously exist in the completely closed conformation.  相似文献   

2.
The response of V(1) ATPase of the tobacco hornworm Manduca sexta to Mg(2+) and nucleotide binding in the presence of the enhancer methanol has been studied by CuCl(2)-induced disulfide formation, fluorescence spectroscopy, and small-angle X-ray scattering. When the V(1) complex was supplemented with CuCl(2) nucleotide-dependence of A-B-E and A-B-E-D cross-linking products was observed in absence of nucleotides and presence of MgADP+Pi but not when MgAMP.PNP or MgADP were added. A zero-length cross-linking product of subunits D and E was formed, supporting their close proximity in the V(1) complex. The catalytic subunit A was reacted with N-4[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) and spectral shifts and changes in fluorescence intensity were detected upon addition of MgAMP.PNP, -ATP, -ADP+Pi, or -ADP. Differences in the fluorescence emission of these nucleotide-binding states were monitored using the intrinsic tryptophan fluorescence. The structural composition of the V(1) ATPase from M. sexta and conformational alterations in this enzyme due to Mg(2+) and nucleotide binding are discussed on the basis of these and previous observations.  相似文献   

3.
In the crystal structure of the bovine heart mitochondrial F(1)-ATPase (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the two liganded beta subunits, one with MgAMP-PNP bound to the catalytic site (beta(T)) and the other with MgADP bound (beta(D)) have closed conformations. The empty beta subunit (beta(E)) has an open conformation. In beta(T) and beta(D), the distance between the carboxylate of beta-Asp(315) and the guanidinium of beta-Arg(337) is 3.0-4.0 A. These side chains are at least 10 A apart in beta(E). The alpha(3)(betaD311C/R333C)(3)gamma subcomplex of TF(1) with the corresponding residues substituted with cysteine has very low ATPase activity unless it is reduced prior to assay or assayed in the presence of dithiothreitol. The reduced subcomplex hydrolyzes ATP at 50% the rate of wild-type and is rapidly inactivated by oxidation by CuCl(2) with or without magnesium nucleotides bound to catalytic sites. Titration of the subcomplex with iodo[(14)C]acetamide after prolonged treatment with CuCl(2) in the presence or absence of 1 mM MgADP revealed nearly two free sulfhydryl groups/mol of enzyme. Therefore, one pair of introduced cysteines is located on a beta subunit that exists in the open or partially open conformation even when catalytic sites are saturated with MgADP. Since V(max) of ATP hydrolysis is attained when three catalytic sites of F(1) are saturated, the catalytic site that binds ATP must be closing as the catalytic site that releases products is opening.  相似文献   

4.
F1-ATPase is inactivated by entrapment of MgADP in catalytic sites and reactivated by MgATP or P(i). Here, using a mutant alpha(3)beta(3)gamma complex of thermophilic F(1)-ATPase (alpha W463F/beta Y341W) and monitoring nucleotide binding by fluorescence quenching of an introduced tryptophan, we found that P(i) interfered with the binding of MgATP to F(1)-ATPase, but binding of MgADP was interfered with to a lesser extent. Hydrolysis of MgATP by F(1)-ATPase during the experiments did not obscure the interpretation because another mutant, which was able to bind nucleotide but not hydrolyse ATP (alpha W463F/beta E190Q/beta Y341W), also gave the same results. The half-maximal concentrations of P(i) that suppressed the MgADP-inhibited form and interfered with MgATP binding were both approximately 20 mm. It is likely that the presence of P(i) at a catalytic site shifts the equilibrium from the MgADP-inhibited form to the enzyme-MgADP-P(i) complex, an active intermediate in the catalytic cycle.  相似文献   

5.
Using polarization fluorimetry, we have investigated conformational changes of FITC-phalloidin-labeled F-actin in ghost muscle fibers. These changes were induced by myosin subfragment-1 (S1) in the absence and presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes of orientation and mobility of actin monomers during the ATPase cycle. The most pronounced differences in orientation (~4 degrees ) and in mobility (~43%) of actin were found between the actomyosin states induced by MgADP and MgATP.  相似文献   

6.
Using polarization fluorimetry, the orientation and mobility of 1,5-IAEDANS specifically bound to Cys707 of myosin subfragment-1 (S1) were studied in ghost muscle tropomyosin-containing fibers in the absence and in the presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes in the structural state of the myosin head during the ATPase cycle. Maximal differences in the probe orientation by 4 degrees and its mobility by 30% were found between actomyosin states in the presence of MgADP and MgATP. It is suggested that interaction of S1 with F-actin induces nucleotide-dependent rotation of the whole motor domain of the myosin head or only the dye-binding site and also change in the head mobility.  相似文献   

7.
Addition of MgADP to skinned skeletal muscle fibers causes a rise in Ca(2+)-activated isometric tension. Mechanisms underlying this tension increase have been investigated by rapid photogeneration of ADP within skinned single fibers of rabbit psoas muscle. Photolysis of caged ADP (P2-1(2-nitrophenyl)ethyladenosine 5'-diphosphate) resulted in an exponential increase in isometric tension with an apparent rate constant, kADP, of 9.6 +/- 0.3 s-1 (mean +/- SE, n = 28) and an amplitude, PADP, of 4.9 +/- 0.3% Po under standard conditions (0.5 mM photoreleased MgADP, 4 mM MgATP, pH 7.0, pCa 4.5, 0.18 M ionic strength, 15 degrees C). PADP depended upon the concentration of photoreleased MgADP as well as the concentration of MgATP. A plot of 1/PADP vs. 1/[MgADP] at three MgATP concentrations was consistent with competition between MgADP and MgATP for the same site on the crossbridge. The rate of the transient, kADP, also depended upon the concentration of MgADP and MgATP. At both 4 and 1 mM MgATP, kADP was not significantly different after photorelease of 0.1-0.5 mM MgADP, but was reduced by 28-40% when 3.5 mM MgADP was added before photorelease of 0.5 mM MgADP. kADP was accelerated by about twofold when MgATP was varied from 0.5 to 8 mM MgATP. These effects of MgATP and MgADP were not readily accounted for by population of high force-producing states resulting from reversal of the ADP dissociation process. Rather, the results suggest that competition between MgADP and MgATP for crossbridges at the end of the cycle slows detachment leading to accumulation of force-generating crossbridges. Elevation of steady- state Pi concentration from 0.5 to 30 mM caused acceleration of kADP from 10.2 +/- 0.5 to 27.8 +/- 1.8 s-1, indicating that the tension rise involved crossbridge flux through the Pi dissociation step of the cycle.  相似文献   

8.
The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evulution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor of MgATP in the MgATP-induced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K'i = 20 micron was determined for MgADP. The release of MgADP or a coupled conformation change in the Fe-protein of K.pneumoniae occurred with a rate comparable with that of electron transfer, k approximately 2 X 10(2)S-1. Neither homotropic nor heterotropic interactions involving MgATP and MgADP were observed for this reaction. Steady-state kinetic data for H2 evolution exhibited heterotropic effects between MgADP and MgATP. The data have been fitted to symmetry and sequential-type models involving conformation changes in two identical subunits. The data suggest that the enzyme can bind up to molecules of either MgATP or MgADP, but is unable to bind both nucleotides simultaneously. The control of H2 evolution by the MgATP/MgADP ratio is not at the level of electron transfer between the Fe- and Mo-Fe-proteins.  相似文献   

9.
The rate of binding and dissociation of MgADP from its ternary complex with actin and S1 was measured by following the extent to which fixed concentrations of MgADP slow down MgATP-induced dissociation of acto-S1. The solution of the equations describing this process shows that at any MgADP concentration the apparent rate of acto-S1 dissociation should be proportional to a square root of the equilibrium constant for MgADP dissociation and to MgATP concentration. By measuring the apparent rate of acto-S1 dissociation as a function of MgATP concentration, the rate of MgADP binding and dissociation were determined as 5 X 10(6) M-1 X s-1 and 1400 s-1, respectively. These rates were unchanged by modification of SH1 thiol of S1 by a variety of fluorescence and spin-labels, but dissociation rate was drastically reduced when SH1 was labelled with 5-iodoacetamidofluorescein.  相似文献   

10.
The kinetics of the SMP-catalyzed Pi-ATP exchange and oxidative phosphorylation was studied at variable [MgATP] + + [MgADP] and [MgATP]/[MgADP]. The existence on F1 of a center with a low affinity was demonstrated (KM = 0.4-2.7 mM). Saturation of this center with the Mg2+-complex of one of the nucleotides is obligatory for H+-ATPase to exhibit its ATP synthetase activity. It was found that with a decrease of [MgATP]/[MgADP] the lag periods, tau, of the reactions and KM(Pi) also show a decrease. Besides, in the Pi-ATP exchange reactions delta microH+ (steady-state) diminishes and SMP coupling is enhanced (the Vhydr/Vsynth ratio is decreased). Preincubation of SMP with MgADP eliminates the lags but does not affect the course of the steady-state reaction. It is concluded that F1 when bound to MgATP or MgADP changes to a "more" or "less coupled" conformational state, thus determining the rate of conversion to the ATP-synthetase functional state (ko = tau-1), the threshold potential of this conversion and the kinetic behaviour of ATP-synthetase (KM for Pi).  相似文献   

11.
Polarized fluorimetry technique and ghost muscle fibers containing tropomyosin were used to study effects of caldesmon (CaD) and recombinant peptides CaDH1 (residues 506-793), CaDH2 (residues 683-767), CaDH12 (residues 506-708) and 658C (residues 658-793) on the orientation and mobility of fluorescent label 1.5-IAEDANS specifically bound to Cys-707 of myosin subfragment-1 (S1) in the absence of nucleotide, and in the presence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. It was shown that at modelling different intermediates of actomyosin ATPase, the orientation and mobility of dye dipoles changed discretely, suggesting a multi-step changing of the myosin head structural state in ATP hydrolysis cycle. The maximum difference in orientation and mobility of the oscillator (4 degrees and 30%, respectively) was observed between actomyosin in the presence of MgATP, and actomyosin in the presence of MgADP. Caldesmon actin-binding sites C and B' inhibit formation of actomyosin strong binding states, while site B activates it. It is suggested that actin-myosin interaction in ATP hydrolysis cycle initiates nucleotide-dependent rotation of myosin motor domain, or that of its site for dye binding as well as the change in myosin head mobility. Caldesmon drives ATP hydrolysis cycle by shifting the equilibrium between strong and weak forms of actin-myosin binding.  相似文献   

12.
The ATP-sensitive potassium (K(ATP)(+)) channel is crucial for the regulation of insulin secretion from the pancreatic beta-cell, and mutations in either the sulfonylurea receptor type 1 (SUR1) or Kir6. 2 subunit of this channel can cause persistent hyperinsulinemic hypoglycemia of infancy (PHHI). We analyzed the functional consequences of the PHHI missense mutation R1420C, which lies in the second nucleotide-binding fold (NBF2) of SUR1. Mild tryptic digestion of SUR1 after photoaffinity labeling allowed analysis of the nucleotide-binding properties of NBF1 and NBF2. Labeling of NBF1 with 8-azido-[alpha-(32)P]ATP was inhibited by MgATP and MgADP with similar K(i) for wild-type SUR1 and SUR1-R1420C. However, the MgATP and MgADP affinities of NBF2 of SUR1-R1420C were about 5-fold lower than those of wild-type SUR1. MgATP and MgADP stabilized 8-azido-ATP binding at NBF1 of wild-type SUR1 by interacting with NBF2, but this cooperative nucleotide binding was not observed for SUR1-R1420C. Studies on macroscopic currents recorded in inside-out membrane patches revealed that the SUR1-R1420C mutation exhibits reduced expression but does not affect inhibition by ATP or tolbutamide or activation by diazoxide. However, co-expression with Kir6.2-R50G, which renders the channel less sensitive to ATP inhibition, revealed that the SUR1-R1420C mutation increases the EC(50) for MgADP activation from 74 to 197 microm. We suggest that the lower expression of the mutant channel and the reduced affinity of NBF2 for MgADP may lead to a smaller K(ATP)(+) current in R1420C-PHHI beta-cells and thereby to the enhanced insulin secretion. We also propose a new model for nucleotide activation of K(ATP)(+) channels.  相似文献   

13.
Activating mutations in the pore-forming Kir6.2 (KCNJ11) and regulatory sulphonylurea receptor SUR1 (ABCC8) subunits of the K(ATP) channel are a common cause of transient neonatal diabetes mellitus (TNDM). We identified a new TNDM mutation (R826W) in the first nucleotide-binding domain (NBD1) of SUR1. The mutation was found in a region that heterodimerizes with NBD2 to form catalytic site 2. Functional analysis showed that this mutation decreases MgATP hydrolysis by purified maltose-binding protein MBP-NBD1 fusion proteins. Inhibition of ATP hydrolysis by MgADP or BeF was not changed. The results indicate that the ATPase cycle lingers in the post-hydrolytic MgADP.P(i)-bound state, which is associated with channel activation. The extent of MgADP-dependent activation of K(ATP) channel activity was unaffected by the R826W mutation, but the time course of deactivation was slowed. Channel inhibition by MgATP was reduced, leading to an increase in resting whole-cell currents. In pancreatic beta cells, this would lead to less insulin secretion and thereby diabetes.  相似文献   

14.
Only beta-beta cross-links form when the alpha(3)(betaE(395)C)(3)gammaK(36)C (MF(1) residue numbers) double mutant subcomplex of TF(1), the F(1)-ATPase from the thermophilic Bacillus PS3, is slowly inactivated with CuCl(2) in the presence or absence of MgATP. The same slow rate of inactivation and extent of beta-beta cross-linking occur upon treatment of the alpha(3)(betaE(395)C)(3)gamma single mutant subcomplex with CuCl(2) under the same conditions. In contrast, the alpha(3)(betaE(395)C)(3)gammaR(33)C and alpha(3)(betaE(395)C)(3)gammaR(75)C double mutant subcomplexes of TF(1) are rapidly inactivated by CuCl(2) under the same conditions that is accompanied by complete beta-gamma cross-linking. The ATPase activity of each mutant enzyme containing the betaE(395)C substitution is stimulated to a much greater extent by the nonionic detergent lauryldimethylamine oxide (LDAO) than wild-type enzyme, whereas the ATPase activities of the gammaR(33)C, gammaK(36)C, and gammaR(75)C single mutants are stimulated to about the same extent as wild-type enzyme by LDAO. This indicates that the E(395)C substitution in the (394)DELSEED(400) segment of beta subunits increases propensity of the enzyme to entrap inhibitory MgADP in a catalytic site during turnover. These results are discussed in perspective with (i) the ionic track predicted from molecular dynamics simulations to operate during energy-driven ATP synthesis by MF(1), the F(1)-ATPase from bovine heart mitochondria [Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G. W., Walker, J. E., and Karplus, M. (2002) Structure 10, 921-931]; and (ii) the possibility that the betaE(395)C substitution might induce a global effect that alters affinity of noncatalytic sites for nucleotides or alters communication between noncatalytic sites and catalytic sites during ATP hydrolysis.  相似文献   

15.
Ren H  Bandyopadhyay S  Allison WS 《Biochemistry》2006,45(19):6222-6230
The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.  相似文献   

16.
Multidrug resistance protein MRP1 is an ATP-dependent drug efflux pump that confers resistance in human cancer cells to various chemotherapeutic drugs. We have reconstituted purified MRP1 in lipid vesicles. The reconstituted protein conserves ATPase and drug transport activity. Structural analysis of MRP1 was investigated by infrared spectroscopy for the first time. This technique offers a unique opportunity to determine structural parameters characterizing a membrane protein in its lipid environment. Addition of different ligands (MgATP, MgATPgammaS, MgADP and P(i), and MgADP) did not significantly affect the MRP1 secondary structure, which is made of 46% alpha-helix, 26% beta-sheet, 12% beta-turns, and 17% random coil. Binding of MgATP increased the protein accessibility to the solvent, suggesting a modification in the tertiary organization of the protein. Hydrolysis of MgATP to MgADP and P(i) did not significantly change the global accessibility of the protein. Release of P(i), after hydrolysis, caused a decrease in the accessibility of MRP1 to the water phase which brings the protein back to its initial conformation. All together, the data demonstrate that MRP1 adopts different structures during its catalytic cycle.  相似文献   

17.
The kinetic mechanism of protein kinase C (PKC) was analyzed via inhibition studies using the product MgADP, the nonhydrolyzable ATP analogue adenosine 5'-(beta,gamma-imidotriphosphate) (MgAMPPNP), the peptide antagonist poly(L-lysine), and several naturally occurring ATP analogues that are produced in rapidly growing cells, i.e., the diadenosine oligophosphates (general structure: ApnA; n = 2-5). By use of histone as the phosphate acceptor, the inhibition of PKC by MgAMPPNP and MgADP was found to be competitive vs MgATP (suggesting that these compounds bind to the same enzyme form), whereas their inhibition vs histone was observed to be noncompetitive. In contrast, the inhibition by poly(L-lysine) appeared competitive vs histone but uncompetitive vs MgATP, which is consistent with a model wherein MgATP binding promotes the binding of poly(L-lysine) or histone. With the diadenosine oligophosphates, the degree of PKC inhibition was found to increase according to the number of intervening phosphates. The diadenosine oligophosphates Ap4A and Ap5A were the most effective antagonists of PKC, with Ap5A being approximately as potent as MgADP and MgAMPPNP. However, as opposed to MgADP and MgAMPPNP, Ap4A and Ap5A appear to act as noncompetitive inhibitors vs both MgATP and histone, suggesting that they can interact at several points in the reaction pathway. These studies support the concept of a steady-state mechanism where MgATP binding preferentially precedes that of histone, followed by the release of phosphorylated substrate and MgADP. Furthermore, these results indicate a differential interaction of the diadenosine oligophosphates with PKC, when compared to other adenosine nucleotides.  相似文献   

18.
M M Werber  Y M Peyser  A Muhlrad 《Biochemistry》1992,31(31):7190-7197
Beryllium and aluminum fluorides are good phosphate analogues. These compounds, like orthovanadate, form stable complexes with myosin subfragment 1 (S1) in the presence of MgADP. The formation of the stable S1-nucleotide complexes is characterized by the loss of ATPase activity. For the complete loss of ATPase activity there was necessary a higher concentration of aluminum than of beryllium or vanadate. In the presence of MgATP the onset of the inhibition is delayed, which indicates that stable complexes cannot form when a specific site is occupied by the gamma-phosphate of ATP or by P(i) derived from the gamma-phosphate. The half-lives of the S1-MgADP-(BeF3-), S1-MgADP-(AlF4-), and S1-MgADP-Vi complexes at 0 degrees C are 7, 2, and 4 days, respectively. In the presence of actin the rate of decomposition of all of the complexes is significantly enhanced; however, the order of decomposition is reversed, the fastest rate being observed with beryllium and the slowest with aluminum. The formation of the S1-MgADP-(BeF3-) and S1-MgADP-(AlF4-) complexes is accompanied by an increase in tryptophan fluorescence similar to that observed upon addition of MgATP to S1. The fluorescence increase develops rather slowly, by suggesting that the rate-limiting step in the formation of the stable complex is an isomerization. The rate of the fluorescence change accompanying the formation of the Be complex is faster than that for the Al complex. Addition of vanadate to S1 causes a static quenching of the tryptophan fluorescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Nucleotide-induced states of myosin subfragment 1 cross-linked to actin   总被引:2,自引:0,他引:2  
A M Duong  E Reisler 《Biochemistry》1989,28(8):3502-3509
Actomyosin interactions and the properties of weakly bound states in carbodiimide-cross-linked complexes of actin and myosin subfragment 1 (S-1) were probed in tryptic digestion, fluorescence, and thiol modification experiments. Limited proteolysis showed that the 50/20K junction on S-1 was protected in cross-linked acto-S-1 from trypsin even under high-salt conditions in the presence of MgADP, MgAMPPNP, and MgPPi (mu = 0.5 M). The same junction was exposed to trypsin by MgATP and MgATP gamma S but mainly on S-1 cross-linked via its 50K fragment to actin. p-Phenylenedimaleimide-bridged S-1, when cross-linked to actin, yielded similar tryptic cleavage patterns to those of cross-linked S-1 in the presence of MgATP. By using p-nitrophenylenemaleimide, it was found that the essential thiols of cross-linked S-1 were exposed to labeling in the presence of MgATP and MgATP gamma S in a state-specific manner. In contrast to this, the reactive thiols were protected from modification in the presence of MgADP, MgAMPPNP, and MgPPi at mu = 0.5 M. These modifications were compared with similar reactions on isolated S-1. Experiments with pyrene-actin cross-linked to S-1 showed enhancement of fluorescence intensity upon additions of MgATP and MgATP gamma S, indicating the release of the pyrene probe on actin from the sphere of S-1 influence. The results of this study contrast the "open" structure of weakly bound actomyosin states to the "tight" conformation of rigor complexes.  相似文献   

20.
Several earlier studies have led to different conclusions about the complex of myosin with MgAMP-PNP. It has been suggested that subfragment 1 of myosin (S1)-MgAMP-PNP forms an S1-MgADP-like state, an intermediate between the myosin S1-MgATP and myosin S1-MgADP states or a mixture of cross-bridge states. We suggest that the different states observed result from the failure to saturate S1 with MgAMP-PNP. At saturating MgAMP-PNP, the interaction of myosin S1 with actin is very similar to that which occurs in the presence of MgATP. 1) At 1 degrees C and 170 mM ionic strength the equatorial x-ray diffraction intensity ratio I11/I10 decreased with an increasing MgAMP-PNP concentration and leveled off by approximately 20 mM MgAMP-PNP. The resulting ratio was the same for MgATP-relaxed fibers. 2) The two dimensional x-ray diffraction patterns from MgATP-relaxed and MgAMP-PNP-relaxed bundles are similar. 3) The affinity of S1-MgAMP-PNP for the actin-tropomyosin-troponin complex in solution in the absence of free calcium is comparable with that of S1-MgATP. 4) In the presence of calcium, I11/I10 decreased toward the relaxed value with increasing MgAMP-PNP, signifying that the affinity between cross-bridge and actin is weakened by MgAMP-PNP. 5) The degree to which the equatorial intensity ratio decreases as the ionic strength increases is similar in MgAMP-PNP and MgATP. Therefore, results from both fiber and solution studies suggest that MgAMP-PNP acts as a non hydrolyzable MgATP analogue for myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号