首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Rho is a small GTPase that controls signal transduction pathways in response to a large number of extracellular stimuli. With over 15 potential Rho target proteins identified to date, however, it is not clear how distinct signaling outputs can be generated downstream of a particular stimulus. RESULTS: Several of the known Rho targets are structurally reminiscent of scaffold proteins, which are generally thought to play an important role in controlling signaling specificity. Here, we show that the Rho target CNK1 is a scaffold protein that interacts with Net1 or p115RhoGEF, two Rho-specific guanine nucleotide exchange factors (GEFs), as well with MLK2 and MKK7, two of the kinase components in the JNK MAP kinase cascade. CNK1 acts cooperatively with the two GEFs to activate JNK MAP kinase, but not other Rho-mediated pathways. In HeLa cells, serum or sphingosine-1-phosphate stimulate Rho-dependent activation of the JNK MAP kinase cascade, and this requires endogenous CNK1. CONCLUSIONS: We conclude that CNK1 couples a subset of Rho exchange factors to activation of the JNK MAP kinase pathway and that signaling specificity is achieved through complexes containing both upstream activators and downstream targets of Rho.  相似文献   

2.
Inka Fricke 《FEBS letters》2009,583(1):75-80
Plant G proteins of the ROP/RAC family regulate cellular processes including cytoskeletal rearrangement in polar growth. Activation of the ROP molecular switch is triggered by guanine nucleotide exchange factors. Plant-specific RopGEFs are exclusively active on ROPs despite their high homology to animal Rho proteins. Based on a sequence comparison of ROPs vs. animal Rho proteins together with structural data on distinct ROPs, we identified unique substrate determinants of RopGEF specificity by mutational analysis: asparagine 68 next to switch II, arginine 76 of a putative phosphorylation motif and the Rho insert are essential for substrate recognition by RopGEFs. These data also provide first evidence for a function of the Rho insert in interactions with GEFs.  相似文献   

3.
Dbl family guanine nucleotide exchange factors   总被引:27,自引:0,他引:27  
The Dbl family of guanine nucleotide exchange factors are multifunctional molecules that transduce diverse intracellular signals leading to the activation of Rho GTPases. The tandem Dbl-homology and pleckstrin-homology domains shared by all members of this family represent the structural module responsible for catalyzing the GDP–GTP exchange reaction of Rho proteins. Recent progress in genomic, genetic, structural and biochemical studies has implicated Dbl family members in diverse biological processes, including growth and development, skeletal muscle formation, neuronal axon guidance and tissue organization. The detailed pictures of their autoregulation, agonist-controlled activation and mechanism of interaction with Rho GTPase substrates, have begun to emerge.  相似文献   

4.
Arf6 is an isoform of Arf that localizes at the periphery of the cell where it has an essential role in endocytotic pathways. Its function does not overlap with that of Arf1, although the two proteins share approximately 70% sequence identity and they have switch regions, whose conformation depends on the nature of the guanine nucleotide, with almost identical sequences. The crystal structure of Arf6-GDP at 2.3 A shows that it has a conformation similar to that of Arf1-GDP, which cannot bind membranes with high affinity. Significantly, the switch regions of Arf6 deviate by 2-5 A from those of Arf1. These differences are a consequence of the shorter N-terminal linker of Arf6 and of discrete sequence changes between Arf6 and Arf1. Mutational analysis shows that one of the positions which differs between Arf1 and Arf6 affects the configuration of the nucleotide binding site and thus the nucleotide binding properties of the Arf variant. Altogether, our results provide a structural basis for understanding how Arf1 and Arf6 can be distinguished by their guanine nucleotide exchange factors and suggest a model for the nucleotide/membrane cycle of Arf6.  相似文献   

5.
6.
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.  相似文献   

7.
The dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) regulates cytoskeletal dynamics by activating the GTPases Rac and/or Cdc42. Eleven human DOCK proteins play various important roles in developmental processes and the immune system. Of these, DOCK1–5 proteins bind to engulfment and cell motility (ELMO) proteins to perform their physiological functions. Recent structural studies have greatly enhanced our understanding of the complex and diverse mechanisms of DOCK GEF activity and GTPase recognition and its regulation by ELMO. This review is focused on gaining structural insights into the substrate specificity of the DOCK GEFs, and discuss how Rac and Cdc42 are specifically recognized by the catalytic DHR-2 and surrounding domains of DOCK or binding partners.  相似文献   

8.
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological- cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanisms for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.  相似文献   

9.
Targeted disruption of both alleles of mouse sos1, which encodes a Ras-specific exchange factor, conferred mid-gestational embryonic lethality that was secondary to impaired placental development and was associated with very low placental ERK activity. The trophoblastic layers of sos1(-/-) embryos were poorly developed, correlating with high sos1 expression in wild-type trophoblasts. A sos1(-/-) cell line, which expressed readily detectable levels of the closely related Sos2 protein, formed complexes between Sos2, epidermal growth factor receptor (EGFR) and Shc efficiently, gave normal Ras.GTP and ERK responses when treated with EGF for < or =10 min and was transformed readily by activated Ras. However, the sos1(-/-) cells were resistant to transformation by v-Src or by overexpressed EGFR and continuous EGF treatment, unlike sos1(+/-) or wild-type cells. This correlated with Sos2 binding less efficiently than Sos1 to EGFR and Shc in cells treated with EGF for > or =90 min or to v-Src and Shc in v-Src-expressing cells, and with less ERK activity. We conclude that Sos1 participates in both short- and long-term signaling, while Sos2-dependent signals are predominantly short-term.  相似文献   

10.
Ras-GRF1 and Ras-GRF2 constitute a family of calmodulin-regulated guanine-nucleotide exchange factors (GEFs) that activate Ras proteins. Here we show that whereas Ras-GRF1 activated both Ha-Ras and R-Ras in cells, Ras-GRF2 activated only Ha-Ras. The inability of Ras-GRF2 to activate R-Ras was the consequence of the GTPase being post-translationally modified, since Ras-GRF2 activated unprocessed R-Ras as effectively as unprocessed Ha-Ras when assays were performed either in vivo or in vitro. Moreover, Ras-GRF2 failed to activate fully processed R-Ras in vitro. The particular C-terminal lipid attached to the GTPases played an important role in determining signaling specificity, since R-Ras became more responsive to Ras-GRF2 when it was farnesylated instead of geranylgeranylated. Similarly, Ha-Ras became less responsive to Ras-GRF2 when it was geranylgeranylated instead of farnesylated. Analysis of chimeras between Ras-GRF1 and Ras-GRF2 demonstrated that a 30-amino acid segment embedded with their catalytic domains was responsible for recognizing the presence of different lipids on Ras proteins. These results indicate that the specific lipid moiety attached to GTPases can contribute to signaling specificity of Ras-GEFs.  相似文献   

11.
RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.  相似文献   

12.
Ect2 was identified originally as a transforming protein and a member of the Dbl family of Rho guanine nucleotide exchange factors (GEFs). Like all Dbl family proteins, Ect2 contains a tandem Dbl homology (DH) and pleckstrin homology (PH) domain structure. Previous studies demonstrated that N-terminal deletion of sequences upstream of the DH domain created a constitutively activated, transforming variant of Ect2 (designated DeltaN-Ect2 DH/PH/C), indicating that the N terminus served as a negative regulator of DH domain function in vivo. The role of sequences C-terminal to the DH domain has not been established. Therefore, we assessed the consequences of mutation of C-terminal sequences on Ect2-transforming activity. Surprisingly, in contrast to observations with other Dbl family proteins, we found that mutation of the invariant tryptophan residue in the PH domain did not impair DeltaN-Ect2 DH/PH/C transforming activity. Furthermore, although the sequences C-terminal to the PH domain lack any known functional domains or motifs, deletion of these sequences (DeltaN-Ect2 DH/PH) resulted in a dramatic reduction in transforming activity. Whereas DeltaN-Ect2 caused formation of lamellipodia, DeltaN-Ect2 DH/PH enhanced actin stress fiber formation, suggesting that C-terminal sequences influenced Ect2 Rho GTPase specificity. Consistent with this possibility, we determined that DeltaN-Ect2 DH/PH activated RhoA, but not Rac1 or Cdc42, whereas DeltaN-Ect2 DH/PH/C activated all three Rho GTPases in vivo. Taken together, these observations suggest that regions of Ect2 C-terminal to the DH domain alter the profile of Rho GTPases activated in vivo and consequently may contribute to the enhanced transforming activity of DeltaN-Ect2 DH/PH/C.  相似文献   

13.
A novel spectrophotometric method to study the kinetics of the guanine nucleotide exchange factors-catalyzed reactions is presented. The method incorporates two coupling enzyme systems: (a). GTPase-activating protein which stimulates the intrinsic GTP hydrolysis reaction of small GTPases and (b). purine nucleotide phosphorylase and its chromophoric substrate, 7-methyl-6-thioguanosine, for quantitation of the resultant inorganic phosphate. The continuous coupled enzyme system was used for characterization of the interactions between the small GTPase RhoA and its guanine nucleotide exchange factors, Lbc and Dbl. Kinetic parameters obtained here show that there is no significant difference in kinetic mechanism of these GEFs in interaction with RhoA. The Michaelis-Menten constants were determined to be around 1micro M, and the rate constants k(cat) were around 0.1s(-1).  相似文献   

14.
Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.  相似文献   

15.
16.
Rho GTPases are activated by a family of guanine nucleotide exchange factors (GEFs) known as Dbl family proteins. The structural basis for how GEFs recognize and activate Rho GTPases is presently ill defined. Here, we utilized the crystal structure of the DH/PH domains of the Rac-specific GEF Tiam1 in complex with Rac1 to determine the structural elements of Rac1 that regulate the specificity of this interaction. We show that residues in the Rac1 beta2-beta3 region are critical for Tiam1 recognition. Additionally, we determined that a single Rac1-to-Cdc42 mutation (W56F) was sufficient to abolish Rac1 sensitivity to Tiam1 and allow recognition by the Cdc42-specific DH/PH domains of Intersectin while not impairing Rac1 downstream activities. Our findings identified unique GEF specificity determinants in Rac1 and provide important insights into the mechanism of DH/PH selection of GTPase targets.  相似文献   

17.
The Dbl homology nucleotide exchange factors (GEFs) activate Rho family cytosolic GTPases in a variety of physiological and pathophysiological events. These signaling molecules typically act downstream of tyrosine kinase receptors and often facilitate nucleotide exchange on more than one member of the Rho GTPase superfamily. Three unique GEFs, i.e. p115, PDZ-RhoGEF, and LARG, are activated by the G-protein coupled receptors via the Galpha(12/13), and exhibit very selective activation of RhoA, although the mechanism by which this is accomplished is not fully understood. Based on the recently solved crystal structure of the DH-PH tandem of PDZ-RhoGEF in complex with RhoA (Derewenda, U., Oleksy, A., Stevenson, A. S., Korczynska, J., Dauter, Z., Somlyo, A. P., Otlewski, J., Somlyo, A. V., and Derewenda, Z. S. (2004) Structure (Lond.) 12, 1955-1965), we conducted extensive mutational and functional studies of the molecular basis of the RhoA selectivity in PDZ-RhoGEF. We show that while Trp(58) of RhoA is intimately involved in the interaction with the DH domain, it is not a selectivity determinant, and its interaction with PDZ-RhoGEF is unfavorable. The key selectivity determinants are dominated by polar contacts involving residues unique to RhoA. We find that selectivity for RhoA versus Cdc42 is defined by a small number of interactions.  相似文献   

18.
We have previously reported the Ras-dependent activation of the mitogen-activated protein kinases p44 and p42, also termed extracellular signal-regulated kinases (ERK)1 and 2 (ERK1/2), mediated through Gs-coupled serotonin receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Whereas Gi- and Gq-coupled receptors have been shown to activate Ras through the guanine nucleotide exchange factor (GEF) called Ras-GRF1 (CDC25Mm) by binding of Ca2+/calmodulin to its N-terminal IQ domain, the mechanism of Ras activation through Gs-coupled receptors is not fully understood. We report the endogenous expression of Ras-GRF1 in HEK293 cells. Serotonin stimulation of HEK293 cells transiently expressing Gs-coupled 5-HT7 receptors induced protein kinase A-dependent phosphorylation of the endogenous human Ras-GRF1 on Ser927 and of transfected mouse Ras-GRF1 on Ser916. Ras-GRF1 overexpression increased basal and serotonin-stimulated ERK1/2 phosphorylation. Mutations of Ser916 inhibiting (Ser916Ala) or mimicking (Ser916Asp/Glu) phosphorylation did not alter these effects. However, the deletion of amino acids 1-225, including the Ca2+/calmodulin-binding IQ domain, from Ras-GRF1 reduced both basal and serotonin-stimulated ERK1/2 phosphorylation. Furthermore, serotonin treatment of HEK293 cells stably expressing 5-HT7 receptors increased [Ca2+]i, and the serotonin-induced ERK1/2 phosphorylation was Ca2+-dependent. Therefore, both cAMP and Ca2+ may contribute to the Ras-dependent ERK1/2 activation after 5-HT7 receptor stimulation, through activation of a guanine nucleotide exchange factor with activity towards Ras.  相似文献   

19.
We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders.  相似文献   

20.
AlphaPIX is a Rho GTPase guanine nucleotide exchange factor domain-containing signaling protein that associates with other proteins involved in cytoskeletal-membrane complexes. It has been shown that PIX proteins play roles in some immune cells, including neutrophils and T cells. In this study, we report the immune system phenotype of alphaPIX knockout mice. We extended alphaPIX expression experiments and found that whereas alphaPIX was specific to immune cells, its homolog betaPIX was expressed in a wider range of cells. Mice lacking alphaPIX had reduced numbers of mature lymphocytes and defective immune responses. Antigen receptor-directed proliferation of alphaPIX(-) T and B cells was also reduced, but basal migration was enhanced. Accompanying these defects, formation of T-cell-B-cell conjugates and recruitment of PAK and Lfa-1 integrin to the immune synapse were impaired in the absence of alphaPIX. Proximal antigen receptor signaling was largely unaffected, with the exception of reduced phosphorylation of PAK and expression of GIT2 in both T cells and B cells. These results reveal specific roles for alphaPIX in the immune system and suggest that redundancy with betaPIX precludes a more severe immune phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号