首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance liquid chromatographic (HPLC) method for the determination of L-carnitine in clamped and frozen rat livers is described. L-carnitine + acetyl-CoA in equilibrium with acetyl-L-carnitine + CoASH Using the above enzymatic reaction, release of CoASH is stoichiometric with the L-carnitine added. The present method has made possible the determination of carnitine in liver tissues, which is difficult by the conventional enzymatic spectrophotometric method using 5,5'-dithiobis(2-nitrobenzoic acid), owing to acetyl-CoA hydrolysis during prolonged incubations at pH 7.8.  相似文献   

2.
A method for the removal of CoASH from tissue extracts by maleic anhydride is described. It eliminates CoASH interference in the acetyl-CoA cycling assay using phosphotransacetylase and citrate synthase. Maleyl-CoA thioether does not hydrolyze under the conditions of the assay and allows a reduction in the number of blank samples during acetyl-CoA determination. The levels of acetyl-CoA in whole rat brain, isolated synaptosomes, and mitochondria were found to be 61, 8.6, and 31.3 pmol/mg of protein, respectively.  相似文献   

3.
4.
A two-step method of determining reduced coenzyme A (CoASH) concentrations in tissue or cell extracts is described. In the first step, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. Acetyl-CoA is then condensed with [14C]oxaloacetate by citrate synthase to give [14C]citrate. This method allows the measurement of 10-200 pmol of CoASH. By omitting the phosphotransacetylase step, measurement of the same amount of acetyl-CoA is possible.  相似文献   

5.
Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing beta-oxidation in peroxisomes. Although the peroxisomal membrane appears to be impermeable to CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters peroxisomes as acyl-CoAs, but it is not known how this pool is regulated. The mouse nudix hydrolase 7 (NUDT7alpha) was previously identified in peroxisomes as a CoA-diphosphatase, and therefore suggested to be involved in regulation of peroxisomal CoASH levels. Here we show that mouse NUDT7alpha mainly acts as an acyl-CoA diphosphatase, with highest activity towards medium-chain acyl-CoAs, and much lower activity with CoASH. Nudt7alpha mRNA is highly expressed in liver, brown adipose tissue and heart, similar to enzymes involved in peroxisomal lipid degradation. Nudt7alpha mRNA is down-regulated by Wy-14,643, a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand, in a PPARalpha-dependent manner in mouse liver. In highly purified peroxisomes, nudix hydrolase activity is highest with C(6)-CoA and is decreased by fibrate treatment. Under certain conditions, such as treatment with peroxisome proliferators or fasting, an increase in peroxisomal CoASH levels has been reported, which is in line with a decreased expression/activity of NUDT7alpha. Taken together these data suggest that NUDT7alpha function is tightly linked to peroxisomal CoASH/acyl-CoA homeostasis.  相似文献   

6.
A Chan  M Ebadi 《Life sciences》1981,28(6):697-703
The relationship between the concentration of CoASH and the activity of serotonin N-acetyltransferase (NAT) was studied in rat pineal glands in culture. A technique for microdetermination of CoASH was developed by utilizing acetyl CoA synthetase and partially purified rat liver NAT. Initially CoASH was acetylated with [1–3H] acetate using acetyl CoA synthetase. Subsequently, the labelled acetyl group was transferred from [1–3H] acetyl CoA to tryptamine forming [1–3H acetyl-tryptamine which was then extracted into chloroform and measured by scintillation spectrometry. A direct relationship appeared to exist between the concentrations of CoASH and [1–3H] acetyltryptamine. This method is sensitive and specific since it can detect as low as 10–15 pmoles of CoASH but not structurally related substances such as acetyl CoA, ADP, cysteamine, or D-pantothenic acid. After treating the rat pineal glands in culture with 10 μM norepinephrine for six hours, the concentration of CoASH was found to decrease significantly from 31.96 ± 0.68 to 24.44 ± 0.37 pmoles/gland, while the activity of NAT increased 68 fold. This inverse relationship indicates that CoASH does not play a direct role in NAT induction although it does protect darktime NAT activity in pineal homogenates against thermal inactivation. The sensitivity and the adaptability of this method can be utilized to measure CoASH in discrete regions of rat brain and in experimental conditions where the micromeasurement of CoASH may be required.  相似文献   

7.
A high-performance liquid chromatographic procedure is described for the determination of picomole amounts of CoASH, using a microparticulate, strong anion-exchange resin. The method was applied in a systematic study to optimize the conditions for alkaline hydrolysis of palmitoyl-CoA. The procedure, which ensures 100% recovery of CoASH by hydrolysis of paimitoyl-CoA, was found to be convenient also for the assay of the endogenous content of long-chain acyl-CoA derivatives in biological material.  相似文献   

8.
Three coenzyme A (CoA) molecular species, i.e., acetyl-CoA, malonyl-CoA, and nonesterified CoA (CoASH), in 13 types of fasted rat tissue were analyzed. A relatively larger pool size of total CoA, consisting of acetyl-CoA, malonyl-CoA, and CoASH, was observed in the medulla oblongata, liver, heart, and brown adipose tissue. Focusing on changes in the CoA pool size in response to the nutrient composition of the diet given, total CoA pools in rats continuously fed a high-fat diet for 4 weeks were significantly higher in the hypothalamus, cerebellum, and kidney, and significantly lower in the liver and skeletal muscle than those of rats fed a high-carbohydrate or high-protein diet. In particular, reductions in the liver were remarkable and were caused by decreased CoASH levels. Consequently, the total CoA pool size was reduced by approximately one-fifth of the hepatic contents of rats fed the other diets. In the hypothalamus, which monitors energy balance, all three CoA molecular species measured were at higher levels when rats were fed the high-fat diet. Thus, it was of interest that feeding rats a high-fat diet affected the behaviors of CoA pools in the hypothalamus, liver, and skeletal muscle, suggesting a significant relationship between CoA pools, especially malonyl-CoA and/or CoASH pools, and lipid metabolism in vivo.  相似文献   

9.
Lei Y  Pawelek PD  Powlowski J 《Biochemistry》2008,47(26):6870-6882
The meta-cleavage pathway for catechol is a central pathway for the bacterial dissimilation of a wide variety of aromatic compounds, including phenols, methylphenols, naphthalenes, and biphenyls. The last enzyme of the pathway is a bifunctional aldolase/dehydrogenase that converts 4-hydroxy-2-ketovalerate to pyruvate and acetyl-CoA via acetaldehyde. The structure of the NAD (+)/CoASH-dependent aldehyde dehydrogenase subunit is similar to that of glyceraldehyde-3-phosphate dehydrogenase, with a Rossmann fold-based NAD (+) binding site observed in the NAD (+)-enzyme complex [Manjasetty, B. A., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 6992-6997]. However, the location of the CoASH binding site was not determined. In this study, hydrogen-deuterium exchange experiments, coupled with peptic digest and mass spectrometry, were used to examine cofactor binding. The pattern of hydrogen-deuterium exchange in the presence of CoASH was almost identical to that observed with NAD (+), consistent with the two cofactors sharing a binding site. This is further supported by the observations that either CoASH or NAD (+) is able to elute the enzyme from an NAD (+) affinity column and that preincubation of the enzyme with NAD (+) protects against inactivation by CoASH. Consistent with these data, models of the CoASH complex generated using AUTODOCK showed that the docked conformation of CoASH can fully occupy the cavity containing the enzyme active site, superimposing with the NAD (+) cofactor observed in the X-ray crystal structure. Although CoASH binding Rossmann folds have been described previously, this is the first reported example of a Rossmann fold that can alternately bind CoASH or NAD (+) cofactors required for enzymatic catalysis.  相似文献   

10.
A simple and reliable method for the preparation of biological samples for the evaluation of biochemical parameters representative of the redox and energy states, such as glutathione (GSH), oxidized glutathione (GSSG), oxidized nicotinamide adenine dinucleotide (NAD+), reduced nicotinamide adenine dinucleotide (NADH), oxidized nicotinamide adenine dinucleotide phosphate (NADP+), reduced nicotinamide adenine dinucleotide phosphate (NADPH), coenzyme A (CoASH), oxidized CoASH, ascorbate, malondialdehyde, oxypurines, nucleosides, and energy metabolites, is presented. Fast deproteinization under nonoxidizing conditions is obtained by tissue homogenization in ice-cold, nitrogen-saturated CH3CN + 10 mM KH2PO4 (3:1; v:v), pH 7.40. After sample centrifugation to pellet precipitated proteins, organic solvent removal is performed on clear supernatants by three washings with large volumes of high-performance liquid chromatography (HPLC)-grade chloroform. The remaining aqueous phase, free of solvent and any lipid-soluble substances that may interfere with the further metabolite analysis, is used for the simultaneous ion-pairing HPLC determination of 39 compounds by means of a Kromasil C-18, 250 x 4.6-mm, 5-microm-particle-size column with tetrabutylammonium hydroxide as the pairing reagent. Results obtained by using the present method to prepare different rat tissue extracts demonstrate that it is possible to perform a single tissue preparation only for monitoring, in the same sample, compounds representative of the redox state (through the direct determination of GSH, GSSG, NAD+, NADH, NADP+, NADPH, CoASH, and oxidized CoASH) and of the cell energy state (by the analysis of oxypurines, nucleosides, and energy metabolites). Applicability of this sample processing procedure to quantify variations of the aforementioned compounds under pathological conditions was effected in rats subjected to moderate closed-head trauma.  相似文献   

11.
V A Rozanov 《Radiobiologiia》1984,24(3):353-355
A local exposure of mouse head to gamma-rays caused phase changes in CoASH content of the liver. The administration of D-pantothenate-Ca and D-pantethine increased the level of CoASH in the liver of exposed animals; calcium D-homopantothenate did not influence the co-enzyme content. It is suggested that pantothenate and pantethine act like vitamins while the influence of homopantothenate is associated with the effects of calcium ions.  相似文献   

12.
A highly specific and sensitive assay for the determination of phosphoenolpyruvate carboxykinase (PEPCK) in nanogram-sized tissue samples is described. This test system is based on the stoichiometric transformation of phosphoenolpyruvate into ATP. In a subsequent step ATP is quantified by bioluminescent techniques. The applicability of this assay system is shown by measurements in liver samples with normal and high PEPCK activity levels.  相似文献   

13.
Regulation of pantothenate kinase by coenzyme A and its thioesters   总被引:17,自引:0,他引:17  
Pantothenate kinase catalyzes the rate-controlling step in the coenzyme A (CoA) biosynthetic pathway, and its activity is modulated by the size of the CoA pool. The effect of nonesterified CoA (CoASH) and CoA thioesters on the activity of pantothenate kinase was examined to determine which component of the CoA pool is the most effective regulator of the enzyme from Escherichia coli. CoASH was five times more potent than acetyl-CoA or other CoA thioesters as an inhibitor of pantothenate kinase activity in vitro. Inhibition by CoA thioesters was not due to their hydrolysis to CoASH. CoASH inhibition was competitive with respect to ATP, thus providing a mechanism to coordinate CoA production with the energy state of the cell. There were considerable differences in the size and composition of the CoA pool in cells grown on different carbon sources, and a carbon source shift experiment was used to test the inhibitory effect of the different CoA species in vivo. A shift from glucose to acetate as the carbon source resulted in an increase in the CoASH:acetyl-CoA ratio from 0.7 to 4.3. The alteration in the CoA pool composition was associated with the selective inhibition of pantothenate phosphorylation, consistent with CoASH being a more potent regulator of pantothenate kinase activity in vivo. These results demonstrate that CoA biosynthesis is regulated through feedback inhibition of pantothenate kinase primarily by the concentration of CoASH and secondarily by the size of the CoA thioester pool.  相似文献   

14.
A study of the activation of valproic acid (2-n-propylpentanoic acid) by a soluble extract of rat liver mitochondria in the presence of ATP, CoASH, and MgCl2 revealed that, in addition to valproyl-CoA, an unknown UV-absorbing compound is formed which is the sole product when CoASH is omitted from the incubation mixture. The unknown compound, which was purified by high performance liquid chromatography, was identified as valproyl adenylate (valproyl-AMP) by mass spectrometry and by its enzymatic conversion to valproyl-CoA in the presence of CoASH. Valproyl-AMP exists, at least partially, in a free, not-enzyme-bound form. Its rate of formation is linear with time and increases 5-fold when the pH is decreased from 8 to 6.8. Valproyl-AMP was also identified when the metabolism of valproate was investigated with rat liver mitochondria and rat hepatocytes. Since the synthesis of valproyl-AMP is inhibited by octanoate, medium-chain acyl-CoA synthetase (EC. 6.2.1.2) may be responsible for its formation. This study establishes that during the activation of valproic acid to valproyl-CoA free valproyl-AMP is formed which is a novel cellular metabolite of valproic acid.  相似文献   

15.
A method for determining tissue levels of Coenzyme A and various short-chain-length acyl-CoA derivatives using high-performance liquid chromatography is presented. Separation of the various compounds was accomplished using a reverse-phase Spherisorb ODS II, 5-microns C18 column. Mobile-phase solvents were (a) potassium phosphate, 220 mM; thiodiglycol (2,2-thiodiethanol), 0.05% (v/v), pH 4.0 and (b) methanol, 98%; chloroform; 2% (v/v). The various acyl-CoA derivatives were detected by monitoring the column effluent at 254 nm. Nearly baseline separation was obtained for a standard mixture of free CoASH, methylmalonyl-CoA, beta-hydroxy-beta-methylglutaryl-CoA, succinyl-CoA, acetoacetyl-CoA, acetyl-CoA, propionyl-CoA, isobutyryl-CoA, beta-methyl-crotonyl-CoA, and isovaleryl-CoA. CoA derivative profiles were determined in neutralized perchloric acid extracts of perfused rat hearts and livers and of isolated rat liver mitochondria to demonstrate the utility of this method for assessing the levels of CoA derivatives in biological samples.  相似文献   

16.
The content of coenzyme A-SH (CoASH) and acetyl-CoA of suspensions of rat heart mitochondria was stabilized by the addition of DL-carnitine and acetyl-DL-carnitine, in the presence of the respiratory inhibitor rotenone. The mitochondrial content of NAD+ and NADH was similarly stabilized by the addition of acetoacetate and DL-3-hydroxybutyrate, and the content of ADP and ATP was imposed by the addition of these nucleotides to the mitochondrial suspension, in the presence of uncoupling agent and oligomycin, to inhibit ATPase. Under these conditions, mitochondrial CoASH/acetyl-CoA, NAD+/ NADH, and ADP/ATP ratios could be varied independently, and the effect on the interconversion of active and inactive pyruvate dehydrogenase could be studied. Decreases in both CoASH/acetyl-CoA and NAD+/NADH ratios were shown to be inhibitory to the steady state activity of pyruvate dehydrogenase, and this effect is described at three different ADP/ATP ratios and different concentrations of added MgCl2. A new steady state level of activity was achieved within 10 min of a change in either CoASH/acetyl-CoA or NAD+/NADH ratio; the rate of inactivation was much higher than the rate of reactivation under these conditions. Effects of CoASH/acetyl-CoA and NAD+/NADH may be additive but are still quantitatively lesser than the changes in activity of pyruvate dehydrogenase induced by changes in ADP/ATP ratio. The variation in activity of pyruvate dehydrogenase with ADP/ATP ratio is described in the absence of changes in the other two ratios, conditions which were not met in earlier studies which employed the oxidation of different substrates to generate changes in all three ratios.  相似文献   

17.
Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-89]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 A, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen.  相似文献   

18.
A radioactive assay for the determination of pyruvate dehydrogenase complex activity in muscle tissue has been developed. The assay measures the rate of acetyl-CoA formation from pyruvate in a reaction mixture containing NAD+ and CoASH. The acetyl-CoA is determined as [14C]citrate after condensation with [14C]-oxaloacetate by citrate synthase. The method is specific and sensitive to the picomole range of acetyl-CoA formed. In eleven normal subjects, the active form of pyruvate dehydrogenase (PDCa) in resting human skeletal muscle samples obtained using the needle biopsy technique was 0.44 +/- 0.16 (SD) mumol acetyl-CoA.min-1.g-1 wet wt. Total pyruvate dehydrogenase complex (PDCt) activity was determined after activation by pretreating the muscle homogenate with Ca2+, Mg2+, dichloroacetate, glucose, and hexokinase. The mean value for PDCt was 1.69 +/- 0.32 mumol acetyl-CoA.min-1.g-1 wet wt, n = 11. The precision of the method was determined by analyzing 4-5 samples of the same muscle piece. The coefficient of variation for PDCa was 8% and for PDCt 5%.  相似文献   

19.
Hu X  Norris AL  Baudry J  Serpersu EH 《Biochemistry》2011,50(48):10559-10565
NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The (15)N-(1)H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH-enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.  相似文献   

20.
A rapid method is described for the analysis of mixtures of short-chain acyl coenzyme A thioesters by reversed-phase ion-pair chromatography on LiChrosorb RP-8 and μBondapak C18 columns. The technique is applicable to separation of CoASH, acetyl-CoA propionyl-CoA, and 3-hydroxy-3-methylglutaryl-CoA, as well as dicarboxylic acids and several nucleotides commonly used as cofactors for biosynthetic reactions. The method was utilized on a preparative scale for purification of 3-hydroxy-3-ethylglutaryl-CoA from CoASH and 3-hydroxy-3-ethylglutaric acid. The counterion employed was tetrabutylammonium (phosphate), pH 5.5, in various methanol:water mixtures. Elution profiles and retention values of compounds were influenced by the concentration of counterion and mass of injected sample. Tetrabutylammonium ions could be removed from effluent by ionexchange chromatography on Amberlite IR-120 resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号