首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report shows for the first time the efficient uniform isotope labeling of a recombinant protein expressed using Baculovirus-infected insect cells. The recent availability of suitable media for 15N- and 13C/15N-labeling in insect cells, the high expression of Abl kinase in these labeling media and a suitable labeling protocol made it possible to obtain a 1H–15N-HSQC spectrum for the catalytic domain of Abl kinase of good quality and with label incorporation rates > 90%. The presented isotope labeling method should be applicable also to further proteins where successful expression is restricted to the Baculovirus expression system.  相似文献   

2.
As exemplified by three cases, we show that the addition of a small molecular weight inhibitor to the culture of Baculovirus-infected insect cells can dramatically improve the expression of a recombinant kinase. The expression of the tyrosine kinase KDR was sevenfold higher and mainly in a soluble form, when the KDR inhibitor PTK/ZK was added to the culture at the time of Baculovirus infection. The expression of the catalytic domain of the serine/threonine kinase PKCtheta, which is otherwise not possible with the Baculovirus expression system, was expressed mainly soluble at 120mg/L by the addition of the PKC inhibitor BIM XI to the culture of Baculovirus-infected insect cells. For Abl kinase, the expression could also be significantly increased by the addition of the Abl kinase inhibitor STI571 to the culture. For all three kinases, this method had previously been applied by us for the improved production of kinase/inhibitor complex protein, leading to the co-crystal structures. It is shown here at the cases KDR-PTK/ZK and PKCtheta-BIM XI, that the stimulatory effect of an inhibitor on kinase expression is applicable under many culture conditions. The presented method represents a valuable tool to obtain structural knowledge on kinase-inhibitor complexes.  相似文献   

3.
Summary A novel protocol for isotopically labeling bacterially expressed proteins is presented. This method circumvents problems related to poor cell growth, commonly associated with the use of minimal labeled media, and problems with protein induction encountered, less commonly, when using enriched labeled media. The method involves initially growing the bacterial cells to high optical density in a commercially available enriched labeled medium. Following a suitable growth period, the cells are transferred to a different (minimal) labeled medium, appropriate for induction. The method is demonstrated using the protein melanoma growth stimulating activity (MGSA).  相似文献   

4.
A cost-effective protocol for uniform 15N and/or13 C isotope labeling of bacterially expressed proteins is presented. Unlike most standard protocols, cells are initially grown in a medium containing nutrients at natural abundance and isotopically labeled nutrients are only supplied at the later stages of growth and during protein expression. This permits the accumulation of a large cell mass without the need to employ expensive isotopically labeled nutrients. The abrupt decrease in oxygen consumption that occurs upon complete exhaustion of essential nutrients is used to precisely time the switch between unlabeled and labeled nutrients. Application of the protocol is demonstrated for wild-type and a mutant of the N-terminal zinc-binding domain of HIV-1 integrase.  相似文献   

5.
Chen CY  Cheng CH  Chen YC  Lee JC  Chou SH  Huang W  Chuang WJ 《Proteins》2006,62(1):279-287
We report the culture conditions for successful amino-acid-type selective (AATS) isotope labeling of protein expressed in Pichia pastoris (P. pastoris). Rhodostomin (Rho), a six disulfide-bonded protein expressed in P. pastoris with the correct fold, was used to optimize the culture conditions. The concentrations of [alpha-15N] selective amino acid, nonlabeled amino acids, and ammonium chloride, as well as induction time, were optimized to avoid scrambling and to increase the incorporation rate and protein yield. The optimized protocol was successfully applied to produce AATS isotope-labeled Rho. The labeling of [alpha-15N]Cys has a 50% incorporation rate, and all 12 cysteine resonances were observed in HSQC spectrum. The labeling of [alpha-15N]Leu, -Lys, and -Met amino acids has an incorporation rate greater than 65%, and the expected number of resonances in the HSQC spectra were observed. In contrast, the labeling of [alpha-15N]Asp and -Gly amino acids has a low incorporation rate and the scrambling problem. In addition, the culture condition was successfully applied to label dendroaspin (Den), a four disulfide-bonded protein expressed in P. pastoris. Therefore, the described condition should be generally applicable to other proteins produced in the P. pastoris expression system. This is the first report to present a protocol for AATS isotope labeling of protein expressed in P. pastoris for NMR study.  相似文献   

6.
7.
Human haptoglobin (Hp2) was synthesized in insect cells using the baculovirusAutographa california nuclear polyhedrosis virus (AcNPV) as an expression vector. Viruses carrying the proHp2 cDNA, either fused or non fused to viral polyhedrin DNA sequences, expressed intracellularly low levels of unglycosylated and non maturated haptoglobin. On the contrary, recombinant viruses containing the preoroHp2 cDNA directed the expression of high levels of prohaptoglobin. To a large extent, the uncleaved product was found in the culture medium as a glycosylated molecule. Despite the lack of maturation into subunits, the secreted recombinant prohaptoglobin was able to bind hemoglobin in vitro, although less efficiently than plasma-derived haptoglobin.  相似文献   

8.
Summary The protein human carbonic anhydrase II (HCA II) has been isotopically labeled with 2H, 13C and 15N for high-resolution NMR assignment studies and pulse sequence development. To increase the sensitivity of several key 1H/13C/15N triple-resonance correlation experiments, 2H has been incorporated into HCA II in order to decrease the rates of 13C and 1HN T2 relaxation. NMR quantities of protein with essentially complete aliphatic 2H incorporation have been obtained by growth of E. coli in defined media containing D2O, [1,2-13C2, 99%] sodium acetate, and [15N, 99%] ammonium chloride. Complete aliphatic deuterium enrichment is optimal for 13C and 15N backbone NMR assignment studies, since the 13C and 1HN T2 relaxation times and, therefore, sensitivity are maximized. In addition, complete aliphatic deuteration increases both resolution and sensitivity by eliminating the differential 2H isotopic shift observed for partially deuterated CHnDm moieties.  相似文献   

9.
A novel method is proposed for large-scale synthesis of (13)C- and (15)N-labeled DNA for NMR studies. In this methodology, endonuclease-sensitive repeat amplification (ESRA), a modified PCR strategy, has been used to amplify tandem repeats of the target DNA sequence. The design of the template is such that restriction enzyme (RE) sites separate repeats of the target sequence. The ESRA product is then cloned into a suitable vector. The Escherichia coli cells harboring the plasmid are grown in minimal medium containing [(13)C]glucose and (15)NH(4)Cl as the sole source of carbon and nitrogen, respectively. The target sequence is released by RE digestion of the plasmid, followed by purification using PAGE. Under optimized conditions, the yield ( approximately 5 mg/liter of culture) of (13)C/(15)N-labeled DNA prepared using this approach is found to be several times higher compared to other known enzymatic methods. Successful incorporation of the isotopes has been confirmed using 2D NMR techniques.  相似文献   

10.
Summary A novel method for isotope labeling in selected amino acids is presented for use with the T7 RNA polymerase system. The protocol is illustrated with the DNA-binding domain from the E2 protein of bovine papillomavirus, BPV-1. On addition of rifampicin, protein expression occurs exclusively from the gene controlled by the T7 promoter. Since the bacteria are now dedicated to the production of E2 protein, labeling with specific amino acids is efficiently performed. For example, 10 mg/l of 15N-labeled phenylalanine is shown to be sufficient for incorporation of the label, without scrambling, and without the use of an auxotrophic strain.  相似文献   

11.
12.
Here we report the first application of amino acid-type selective (AATS) isotope labeling of a recombinant protein secreted by Brevibacillus choshinensis for a nuclear magnetic resonance (NMR) study. To prepare the 15N-AATS-labeled protein, the transformed B. choshinensis was cultured in 15N-labeled amino acid-containing C.H.L. medium, which is commonly used in the Escherichia coli expression system. The analyses of the 1H-15N heteronuclear single quantum coherence (HSQC) spectra of the secreted proteins with a 15N-labeled amino acid demonstrated that alanine, arginine, asparagine, cysteine, glutamine, histidine, lysine, methionine, and valine are suitable for selective labeling, although acidic and aromatic amino acids are not suitable. The 15N labeling for glycine, isoleucine, leucine, serine, and threonine resulted in scrambling to specific amino acids. These results indicate that the B. choshinensis expression system is an alternative tool for AATS labeling of recombinant proteins, especially secretory proteins, for NMR analyses.  相似文献   

13.
Multiple segmental and selective isotope labeling of RNA with three segments has been demonstrated by introducing an RNA segment, selectively labeled with 13C9/15N2/2H(1′, 3′, 4′, 5′, 5′′)-labeled uridine residues, into the central position of the 20 kDa ε-RNA of Duck Hepatitis B Virus. The RNA molecules were produced via two efficient protocols: a two-step protocol, which uses T4 DNA ligase and T4 RNA ligase 1, and a one-pot protocol, which uses T4 RNA ligase 1 alone. With T4 RNA ligase 1 all not-to-be-ligated termini are usually protected to prevent formation of side products. We show that such labor-intensive protection of termini is not required, provided segmentation sites can be chosen such that the segments fold into the target structure or target-like structures and thus are not trapped into stable alternate structures. These sites can be reliably predicted via DINAMelt. The simplified NMR spectrum provided evidence for the presence of a U28 H3-imino resonance, previously obscured in the fully labeled sample, and thus of the non-canonical base pair U28:C37. The demonstrated multiple segmental labeling protocols are generally applicable to large RNA molecules and can be extended to more than three segments.  相似文献   

14.
Isotope labeling by residue type (LBRT) has long been an important tool for resonance assignments at the limit where other approaches, such as triple-resonance experiments or NOESY methods do not succeed in yielding complete assignments. While LBRT has become less important for small proteins it can be the method of last resort for completing assignments of the most challenging protein systems. Here we present an approach where LBRT is achieved by adding protonated 14N amino acids that are 13C labeled at the carbonyl position to a medium for uniform deuteration and 15N labeling. This has three important benefits over conventional 15N LBRT in a deuterated back ground: (1) selective TROSY-HNCO cross peaks can be observed with high sensitivity for amino-acid pairs connected by the labeling, and the amide proton of the residue following the 13C labeled amino acid is very sharp since its alpha position is deuterated, (2) the 13C label at the carbonyl position is less prone to scrambling than the 15N at the α-amino position, and (3) the peaks for the 1-13C labeled amino acids can be identified easily from the large intensity reduction in the 1H-15N TROSY-HSQC spectrum for some residues that do not significantly scramble nitrogens, such as alanine and tyrosine. This approach is cost effective and has been successfully applied to proteins larger than 40 kDa. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Direct methods in NMR based structure determination start from an unassigned ensemble of unconnected gaseous hydrogen atoms. Under favorable conditions they can produce low resolution structures of proteins. Usually a prohibitively large number of NOEs is required, to solve a protein structure ab-initio, but even with a much smaller set of distance restraints low resolution models can be obtained which resemble a protein fold. One problem is that at such low resolution and in the absence of a force field it is impossible to distinguish the correct protein fold from its mirror image. In a hybrid approach these ambiguous models have the potential to aid in the process of sequential backbone chemical shift assignment when 13Cβ and 13C′ shifts are not available for sensitivity reasons. Regardless of the overall fold they enhance the information content of the NOE spectra. These, combined with residue specific labeling and minimal triple-resonance data using 13Cα connectivity can provide almost complete sequential assignment. Strategies for residue type specific labeling with customized isotope labeling patterns are of great advantage in this context. Furthermore, this approach is to some extent error-tolerant with respect to data incompleteness, limited precision of the peak picking, and structural errors caused by misassignment of NOEs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Most human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies in infected individuals and in immunized animals are directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. This loop plays a crucial role in phenotypic determination, cytopathicity (syncytium induction), and coreceptor usage of HIV-1. The human monoclonal antibody 447-52D was found to neutralize a broad spectrum of HIV-1 strains. In order to solve the solution structure of the V3MN peptide bound to the 447-52D Fab fragment by NMR, large quantities of labeled peptide and a protocol for the purification of the Fab fragment were needed. An expression plasmid coding for the 23-residue V3 peptide of the HIV-1MN strain (V3MN peptide, YNKRKRIHIGPGRAFYTTKNIIG) linked to a derivative of the RNA-binding domain of hnRNCP1 was constructed. The fusion protein attached to the V3 peptide prevents its degradation. Using this system, U-15N, U-13C,15N, and U-13C,15N, 50% 2H labeled fusion protein molecules were expressed in Escherichia coli grown on rich Celtone medium with yields of about 240 mg/liter. The V3MN peptide was released by CNBr cleavage and purified by RP-HPLC, giving final yields of 6-13 mg/liter. This expression system is generally applicable for biosynthesis of V3-related peptides and was also used to prepare the V3JR-FL. The 447-52D Fab fragment was obtained by a short enzymatic papain cleavage of the whole antibody. Preliminary NMR spectra demonstrate that full structural analysis of the V3MN complexed to the 447-52D Fab is feasible. This system enables studies of the same epitope bound to different HIV-1 neutralizing antibodies.  相似文献   

17.
Selective isotopic labeling of larger proteins greatly simplifies protein NMR spectra and reduces signal overlap, but selectively labeled proteins cannot be easily assigned since the sequential assignment method is not applicable. Here we describe a strategy for resonance assignment in selectively labeled proteins. Our approach involves a spin-labeled analog of a ligand of which the three-dimensional structure in complex with the target protein is known. Other methods for introduction of the spin label are possible. The paramagnetic center causes faster relaxation of all neighboring nuclei in a distance-dependent manner. Measurement of this effect allows to deduce distances between isotopically labeled residues and the paramagnetic center which can be used for resonance assignment. The method is demonstrated for the catalytic domain of Abl kinase in complex with the inhibitor, STI571.  相似文献   

18.
Antimicrobial peptide LL-37 plays an important role in human body's first line of defense against infection. To better understand the mechanism of action, it is critical to elucidate the three-dimensional structure of LL-37 in complex with bacterial membranes. We present a bacterial expression system that allows the incorporation of (15)N and other isotopes into the polypeptide for nuclear magnetic resonance (NMR) analysis. The DNA sequence encoding full-length LL-37 was chemically synthesized and cloned into the pET-32a(+) vector for protein expression in Escherichia coli strain BL21(DE3). The peptide was expressed directly as a His-tagged fusion protein without the inclusion of its precursor sequence. LL-37 was released from the fusion by formic acid cleavage at the AspPro dipeptide bond and separated from the carrier thioredoxin by affinity chromatography and reverse-phase HPLC. The peptide was identified by polyacrylamide gel electrophoresis and further confirmed by mass spectrometry and NMR spectroscopy. Antibacterial activity assays showed that the recombinant LL-37 purified from the bacterial source is as active as that from chemical synthesis. According to the antimicrobial peptide database (), 111 peptides contain a Met residue, but only 5 contain the AspPro pair, indicating a broader application of formic acid than cyanogen bromide in cleaving fusion proteins. The successful application to the expression of the 66-residue cytoplasmic tail of human MUC1 indicates that the system can be applied to other peptides as well.  相似文献   

19.
Stable isotope labeling for proteins of interest is an important technique in structural analyses of proteins by NMR spectroscopy. Escherichia coli is one of the most useful protein expression systems for stable isotope labeling because of its high-level protein expression and low costs for isotope-labeling. However, for the expression of proteins with numerous disulfide-bonds and/or post-translational modifications, E. coli systems are not necessarily appropriate. Instead, eukaryotic cells, such as yeast Pichia pastoris, have great potential for successful production of these proteins. The hemiascomycete yeast Kluyveromyces lactis is superior to the methylotrophic yeast P. pastoris in some respects: simple and rapid transformation, good reproducibility of protein expression induction and easy scale-up of culture. In the present study, we established a protein expression system using K. lactis, which enabled the preparation of labeled proteins using glucose and ammonium chloride as a stable isotope source.  相似文献   

20.
13CHD2 methyl isotopomers are particularly useful to study methyl dynamics in proteins because, as compared with other methyl isotopomers, the 13C relaxation mechanism for this isotopomer is straightforward. However, in the case of proteins, where ()2 1, the refocused INEPT pulse sequence does not completely suppress unwanted 13CH3 signals. The presence of weak 13CH3 peaks is usually not a serious problem for smaller proteins because there are relatively few methyl signals and they are sharp; however, signal overlap becomes more common as the size of the protein increases. We overcome this problem by preparing a protein using a 98% D2O cell culture medium containing 3-13C pyruvic acid, 50–60% deuterated at the 3-position, and 4-13C 2-ketobutyric acid, 98% and 62% deuterated at the 3- and 4-positions, respectively. This approach significantly reduces the population of the CH3 isotopomer while optimizing the production of 13CHD2, the isotopomer desired for 13C relaxation measurements. In larger proteins where the deuterium T2 may be too short to measure accurately, we also suggest the alternative measurement of the proton T2 of the 13CH2D methyl isotopomer, because these protons are well-isolated from other protons in these highly deuterated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号