首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches.  相似文献   

2.
The relationship between ecological variation and microbial genetic composition is critical to understanding microbial influence on community and ecosystem function. In glasshouse trials using nine native legume species and 40 rhizobial strains, we find that bacterial rRNA phylotype accounts for 68% of amoung isolate variability in symbiotic effectiveness and 79% of host specificity in growth response. We also find that rhizobial phylotype diversity and composition of soils collected from a geographical breadth of sites explains the growth responses of two acacia species. Positive soil microbial feedback between the two acacia hosts was largely driven by changes in diversity of rhizobia. Greater rhizobial diversity accumulated in association with the less responsive host species, Acacia salicina, and negatively affected the growth of the more responsive Acacia stenophylla. Together, this work demonstrates correspondence of phylotype with microbial function, and demonstrates that the dynamics of rhizobia on host species can feed back on plant population performance.  相似文献   

3.
Compost amendments to soils and potting mixes are routinely applied to improve soil fertility and plant growth and health. These amendments, which contain high levels of organic matter and microbial cells, can influence microbial communities associated with plants grown in such soils. The purpose of this study was to follow the bacterial community compositions of seed and subsequent root surfaces in the presence and absence of compost in the potting mix. The bacterial community compositions of potting mixes, seed, and root surfaces sampled at three stages of plant growth were analyzed via general and newly developed Bacteroidetes-specific, PCR-denaturing gradient gel electrophoresis methodologies. These analyses revealed that seed surfaces were colonized primarily by populations detected in the initial potting mixes, many of which were not detected in subsequent root analyses. The most persistent bacterial populations detected in this study belonged to the genus Chryseobacterium (Bacteroidetes) and the family Oxalobacteraceae (Betaproteobacteria). The patterns of colonization by populations within these taxa differed significantly and may reflect differences in the physiology of these organisms. Overall, analyses of bacterial community composition revealed a surprising prevalence and diversity of Bacteroidetes in all treatments.  相似文献   

4.
Soil microbes are known to be key drivers of several essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this time frame plants with a monoculture or mixture history changed in the bacterial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same field monocultures or mixtures (plant history in monoculture vs. mixture) in pots inoculated with microbes extracted from the field monoculture and mixture soils attached to the roots of the host plants (soil legacy). After 5 months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Bacterial community structure in the plant rhizosphere was primarily determined by soil legacy and by plant species identity, but not by plant history. In seven of the eight plant species the number of individual operational taxonomic units with increased abundance was larger when inoculated with microbes from mixture soil. We conclude that plant species richness can affect below‐ground community composition and diversity, feeding back to the assemblage of rhizosphere bacterial communities in newly establishing plants via the legacy in soil.  相似文献   

5.
Plant species affect soil bacterial diversity and compositions. However, little is known about the role of dominant plant species in shaping the soil bacterial community during the restoration of sandy grasslands in Horqin Sandy Land, northern China. We established a mesocosm pots experiment to investigate short‐term responses of soil bacterial diversity and composition, and the related soil properties in degraded soils without vegetation (bare sand as the control, CK) to restoration with five plant species that dominate across restoration stages: Agriophyllum squarrosum (AS), Artemisia halodendron (AH), Setaria viridis (SV), Chenopodium acuminatum (CA), and Corispermum macrocarpum (CM). We used redundancy analysis (RDA) to analyze the association between soil bacterial composition and soil properties in different plant species. Our results indicated that soil bacterial diversity was significantly lower in vegetated soils independent of plant species than in the CK. Specifically, soil bacterial species richness and diversity were lower under the shrub AH and the herbaceous plants AS, SV, and CA, and soil bacterial abundance was lower under AH compared with the CK. A field investigation confirmed the same trends where soil bacteria diversity was lower under AS and AH than in bare sand. The high‐sequence annotation analysis showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the most common phyla in sandy land irrespective of soil plant cover. The OTUs (operational taxonomic units) indicated that some bacterial species were specific to the host plants. Relative to bare sand (CK), soils with vegetative cover exhibited lower soil water content and temperature, and higher soil carbon and nitrogen contents. The RDA result indicated that, in addition to plant species, soil water and nitrogen contents were the most important factors shaping soil bacterial composition in semiarid sandy land. Our study from the pot and field investigations clearly demonstrated that planting dominant species in bare sand impacts bacterial diversity. In semiarid ecosystems, changes in the dominant plant species during vegetation restoration efforts can affect the soil bacterial diversity and composition through the direct effects of plants and the indirect effects of soil properties that are driven by plant species.  相似文献   

6.
Plant species richness can increase primary production because plants occupy different niches or facilitate each other (“complementarity effects”) or because diverse mixtures have a greater chance of having more productive species (“selection effects”). To determine how complementarity and selection influence dune restoration, we established four types of plant communities [monocultures of sea oats (Uniola paniculata), bitter panicgrass (Panicum amarum) and saltmeadow cordgrass (Spartina patens) and the three-species mixture] under different soil treatments typical of dune restorations (addition of soil organic material, nutrients, both, or neither). This fully factorial design allowed us to determine if plant identity, diversity and soil treatments influenced the yield of both the planted species and species that recruited naturally (volunteers). Planted species responses in monocultures and mixtures varied among soil treatments. The composition of the plantings and soils also influenced the abundance of volunteers. The mixture of the three species had the lowest cover of volunteers. We also found that the effect of diversity on production increased with fertilizer. We partitioned the biodiversity effect into complementarity and selection effects and found that the increase in the diversity effect occurred because increased nutrients decreased dominance by the largest species and increased complementarity among species. Our findings suggest that different planting schemes can be used to meet specific goals of restoration (e.g., accelerate plant recovery while suppressing colonization of non-planted species).  相似文献   

7.
Background: Disturbances by avalanches have created unique habitats for animals and plants in subalpine ecosystems worldwide, but at the same time avalanches can pose a major threat to humans. Thus, avalanches are suppressed by means of avalanche barriers to protect settlements and infrastructures in populated areas of the European Alps. As a consequence, the disturbance regime in avalanche tracks has fundamentally changed. Methods: In the present study we address ecological consequences of avalanche suppression on plant diversity. We analysed plant diversity and species composition in recent and old avalanche tracks with and without avalanche suppression and in undisturbed adjacent forests at high and low elevations. Results: The number of species was higher in both active and inactive avalanche tracks as compared to undisturbed subalpine forest. The species composition indicated a wider range of ecological niches in active than in inactive avalanche tracks. The vegetation from active tracks showed lower indicator values for temperature and nitrogen availability. The proportion of alpine species was lower in formerly active tracks. Conclusions: The conditions that exist in active avalanche tracks increase plant diversity in relation to undisturbed forest. In the few decades following avalanche suppression, species composition changes in tracks from which avalanches have been excluded. Continued suppression of avalanche disturbance may lead to a decline in plant and habitat diversity. Avalanche disturbance can exert an important influence on the biodiversity of subalpine forests and provide important habitats. Anthropogenic changes in the natural regime of avalanche disturbance are likely to contribute significantly to future landscape changes in subalpine forests.  相似文献   

8.
Experimental tests of the dependence of arthropod diversity on plant diversity   总被引:28,自引:0,他引:28  
ABSTRACT Because a diversity of resources should support a diversity of consumers, most models predict that increasing plant diversity increases animal diversity. We report results of a direct experimental test of the dependence of animal diversity on plant diversity. We sampled arthropods in a well-replicated grassland experiment in which plant species richness and plant functional richness were directly manipulated. In simple regressions, both the number of species planted ([Formula: see text] transformed) and the number of functional groups planted significantly increased arthropod species richness but not arthropod abundance. However, the number of species planted was the only significant predictor of arthropod species richness when both predictor variables were included in ANOVAs or a MANOVA. Although highly significant, arthropod species richness regressions had low [Formula: see text] values, high intercepts (24 arthropod species in monocultures), and shallow slopes. Analyses of relations among plants and arthropod trophic groups indicated that herbivore diversity was influenced by plant, parasite, and predator diversity. Furthermore, herbivore diversity was more strongly correlated with parasite and predator diversity than with plant diversity. Together with regression results, this suggests that, although increasing plant diversity significantly increased arthropod diversity, local herbivore diversity is also maintained by, and in turn maintains, a diversity of parasites and predators.  相似文献   

9.
Abiotic controls on net nitrification rates are well documented, but the potential effects of plants on this important ecosystem process are poorly understood. We evaluated four structural equation models to determine the relative importance of plant community composition, aboveground herbaceous production, and plant species richness on nitrifier abundance and net nitrification following restoration treatments in a ponderosa pine forest. Model selection criteria indicated that species richness was the best predictor of nitrifier abundance, but a model that included community composition effects also had some support in the data. Model results suggest that net nitrification was indirectly related to plant species richness via a positive relationship between species richness and nitrifier abundance. Community composition was indirectly related to nitrifier abundance through its relationship with species richness. Our model indicates that species-rich plant communities dominated by C3 graminoids and legumes are associated with soils that have high abundances of nitrifiers. This study highlights the complexity of deciphering effects of ecological treatments on a system response when multiple interacting factors are simultaneously affected. Our results suggest that plant diversity and composition can both respond to forest thinning, prescribed fire and fuel manipulations, and can be factors that might indirectly influence an ecosystem process such as nitrification. Ecological restoration treatments designed to increase plant diversity and alter community composition may have cascading effects on below-ground processes.  相似文献   

10.
城市化进程带来的城市生境破碎化对城市野生动植物多样性产生了巨大的影响,而生态廊道作为城市中的绿色线性空间,对缓解城市化进程下的生物多样性丧失具有重要作用。自生植物不仅是城市植物多样性的重要组成部分,也为乡土动物提供了赖以生存的资源,在低维护植物景观营造中起到关键作用。聚焦北京温榆河-北运河生态廊道,在对廊道自生植物总体物种组成进行分析的基础上,探究城市化梯度上自生植物物种组成与多样性特征差异,并分析不同自生植物种群对城市化水平的适应性。共调查到温榆河-北运河自生植物195种,隶属于73科,156属,以自生草本植物为主。各城市化水平下自生木本植物的α多样性无显著差异;中低城市化水平下草本植物的α多样性显著高于其他水平(P<0.05)。随着城市化水平升高,自生乔木和一、二年生的β多样性升高,自生多年生草本、自生入侵植物和外来植物的β多样性值下降。在城市化梯度上的生态位宽度均值排序为入侵植物 > 乡土植物 > 国外外来植物 > 国内外来植物。将生态廊道自生植物按照生态位宽度划分为广适型、中适型和狭适型,并依据生态位重叠筛选了与15种入侵植物在城市化梯度上适应性相近的自生乡土植物种类。本研究结果可以为营造稳定的低维护自生植物群落,抵抗外来入侵植物的扩散,实现城市河流生态廊道的生物多样性保护功能提供参考。  相似文献   

11.
A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive below-ground microbial diversity, but to date very little is known as to how plant species composition and diversity influence the community composition of micro-organisms in the soil. We examined this relationship in fields subjected to different above-ground biodiversity treatments and in field experiments designed to examine the influence of plant species on soil-borne microbial communities. Culture-independent strategies were applied to examine the role of wild or native plant species composition on bacterial diversity and community structure in bulk soil and in the rhizosphere. In comparing the influence of Cynoglossum officinale (hound's tongue) and Cirsium vulgare (spear thistle) on soil-borne bacterial communities, detectable differences in microbial community structure were confined to the rhizosphere. The colonisation of the rhizosphere of both plants was highly reproducible, and maintained throughout the growing season. In a separate experiment, effects of plant diversity on bacterial community profiles were also only observed for the rhizosphere. Rhizosphere soil from experimental plots with lower macrophyte diversity showed lower diversity, and bacterial diversity was generally lower in the rhizosphere than in bulk soil. These results demonstrate that the level of coupling between above-ground macrophyte communities and below-ground microbial communities is related to the tightness of the interactions involved. Although plant species composition and community structure appear to have little discernible effect on microbial communities inhabiting bulk soil, clear and reproducible changes in microbial community structure and diversity are observed in the rhizosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The aim of this study was to analyze the structural and functional changes occurring in a polychlorinated-biphenyl (PCB)-contaminated soil ecosystem after the introduction of a suitable host plant for rhizoremediation (Salix viminalis). We have studied the populations and phylogenetic distribution of key bacterial groups (Alpha- and Betaproteobacteria, Acidobacteria, and Actinobacteria) and the genes encoding iron-sulfur protein alpha (ISPalpha) subunits of the toluene/biphenyl dioxygenases in soil and rhizosphere by screening gene libraries using temperature gradient gel electrophoresis. The results, based on the analysis of 415 clones grouped into 133 operational taxonomic units that were sequence analyzed (>128 kbp), show that the rhizospheric bacterial community which evolved from the native soil community during the development of the root system was distinct from the soil community for all groups studied except for the Actinobacteria. Proteobacteria were enriched in the rhizosphere and dominated both in rhizosphere and soil. There was a higher than expected abundance of Betaproteobacteria in the native and in the planted PCB-polluted soil. The ISPalpha sequences retrieved indicate a high degree of catabolic and phylogenetic diversity. Many sequences clustered with biphenyl dioxygenase sequences from gram-negative bacteria. A distinct cluster that was composed of sequences from this study, some previously described environmental sequences, and a putative ISPalpha from Sphingomonas wittichii RW1 seems to contain greater diversity than the presently recognized toluene/biphenyl dioxygenase subfamily. Moreover, the rhizosphere selected for two ISPalpha sequences that accounted for almost 60% of the gene library and were very similar to sequences harbored by Pseudomonas species.  相似文献   

13.
Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales.  相似文献   

14.
In order to acquire a better understanding of the effects of the different delivery modes of bacterial inoculants on plant growth and on the community structure of rhizosphere bacterial populations, Burkholderia ambifaria MCI 7 (formerly B. cepacia MCI 7) was inoculated into the rhizosphere of maize plants by either seed adhesion or incorporation into soil. Plant growth was evaluated at different inoculum concentrations. The community structure of rhizosphere bacterial populations was evaluated by analysing the restriction patterns of the DNA coding for 16S rRNA amplified by polymerase chain reaction (PCR) (ARDRA) of 745 bacterial isolates. A number of diversity indices (richness, Shannon diversity, evenness and mean genetic distance) were calculated for each bacterial population isolated from control and treated plants according to the concept of the r/K strategy. Moreover, the analysis of molecular variance (AMOVA) method was applied to estimate the genetic differences among the various bacterial populations. Our results showed that the method of application can be an essential element in determining the effects of the inoculant on plant growth. In fact, when applied as a maize seed treatment, B. ambifaria MCI 7 promoted plant growth significantly; on the contrary, when incorporated into soil, the same strain reduced plant growth markedly. As far as the bacterial community structure is concerned, B. ambifaria MCI 7 affected the indigenous microflora of treated plants according to the application method: seed treatment brought about an abrupt decrease in bacterial diversity, whereas incorporation into soil increased bacterial diversity. Moreover, changes in bacterial diversity were limited to r-strategist bacteria. In conclusion, B. ambifaria MCI 7 can act as both a plant growth-promoting rhizobacterium and a deleterious rhizobacterium depending on the inoculation method.  相似文献   

15.
Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.  相似文献   

16.
Understanding the relative importance of soil microbial diversity, plants and nutrient management is crucial to implement an effective bioremediation approach to xenobiotics-contaminated soils. To date, knowledge on the interactive effects of soil microbiome, plant and nutrient supply on influencing biodegradation potential of soils remains limited. In this study, we evaluated the individual and interactive effects of soil initial bacterial diversity, nutrient amendments (organic and inorganic) and plant presence on the biodegradation rate of pyrene, a polycyclic aromatic hydrocarbon. Initial bacterial diversity had a strong positive impact on soil biodegradation potential, with soil harbouring higher bacterial diversity showing ~ 2 times higher degradation rates than soils with lower bacterial diversity. Both organic and inorganic nutrient amendments consistently improved the degradation rate in lower diversity soils and had negative (inorganic) to neutral (organic) effect in higher diversity soils. Interestingly, plant presence/type did not show any significant effect on the degradation rate in most of the treatments. Structural equation modelling demonstrated that initial bacterial diversity had a prominent role in driving pyrene biodegradation rates. We provide novel evidence that suggests that soil initial microbial diversity, and nutrient amendments should be explicitly considered in the design and employment of bioremediation management strategies for restoring natural habitats disturbed by organic pollutants.  相似文献   

17.
生姜作为常见的调味品和传统中药材,是我国重要的经济作物之一。作为取食部分的生姜块茎与根系直接相连,其产量、品质与根相关细菌群落密切相关。然而,关于生姜根系微环境中细菌群落的特点仍鲜有报道,土壤环境能否衍生出宿主特异性内生菌群落尚不清楚。以生姜根系不同生态位细菌群落为研究对象,采用高通量测序技术,对非根际、根际及根内细菌进行16S rRNA基因测序。结果表明,不同生态位细菌群落多样性存在显著差异,其中非根际及根际细菌群落多样性(Shannon index, Observed species, Faith′s PD)显著高于内生菌群落。同时,各生态位共现网络稳定性和复杂度表现为非根际>根际>根内细菌群落。而在组成上,细菌群落在不同生态位差异显著(R2=0.57,P=0.001)。其中变形菌门(Proteobacteria)是根内的优势门,该门类下假单胞菌属(Pseudomonas)、短波单胞菌属(Brevundimonas)、寡养单胞菌属(Stenotrophomonas)及泛菌属(Pantoea)在根内显著富集。在根际细菌中,拟杆菌门(Bacteroid...  相似文献   

18.

Background  

Changes in aboveground plant species diversity as well as variations of environmental conditions such as exposure of ecosystems to elevated concentrations of atmospheric carbon dioxide may lead to changes in metabolic activity, composition and diversity of belowground microbial communities, both bacterial and fungal.  相似文献   

19.
A significant proportion of the global diversity of flowering plants has evolved in recent geological time, probably through adaptive radiation into new niches. However, rapid evolution is at odds with recent research which has suggested that plant ecological traits, including the beta- (or habitat) niche, evolve only slowly. We have quantified traits that determine within-habitat alpha diversity (alpha niches) in two communities in which species segregate on hydrological gradients. Molecular phylogenetic analysis of these data shows practically no evidence of a correlation between the ecological and evolutionary distances separating species, indicating that hydrological alpha niches are evolutionarily labile. We propose that contrasting patterns of evolutionary conservatism for alpha- and beta-niches is a general phenomenon necessitated by the hierarchical filtering of species during community assembly. This determines that species must have similar beta niches in order to occupy the same habitat, but different alpha niches in order to coexist.  相似文献   

20.
Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes) and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores, genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations.Methods We established 306 experimental test populations at a previously unoccupied lakeshore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured.Important findings Despite these climatic extremes, 27% of the established populations survived in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. In 2014, several small patches of Ranunculus clones were still present, but plants were strongly intermingled, which precluded their assignment to the original treatments. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号