首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Levels of nucleotide variability are frequently positively correlated with recombination rate and negatively associated with gene density due to the effects of selection on linked variation. These relationships are determined by properties that frequently differ among species, including the mating system, and aspects of genome organization such as how genes are distributed along chromosomes. In rice, genes are found at highest density in regions with frequent crossing-over. This association between gene density and recombination rate provides an opportunity to evaluate the effects of selection in a genomic context that differs from other model organisms. Using single-nucleotide polymorphism data from Asian domesticated rice Oryza sativa ssp. japonica and ssp. indica and their progenitor species O. rufipogon, we observe a significant negative association between levels of polymorphism and both gene and coding site density, but either no association, or a negative correlation, between nucleotide variability and recombination rate. We establish that these patterns are unlikely to be explained by neutral mutation rate biases and demonstrate that a model of background selection with variable rates of deleterious mutation is sufficient to account for the gene density effect in O. rufipogon. In O. sativa ssp. japonica, we report a strong negative correlation between polymorphism and recombination rate and greater losses of variation during domestication in the euchromatic chromosome arms than heterochromatin. This is consistent with Hill-Robertson interference in low-recombination regions, which may limit the efficacy of selection for domestication traits. Our results suggest that the physical distribution of selected mutations is a primary factor that determines the genomic pattern of polymorphism in wild and domesticated rice species.  相似文献   

2.
A fundamental problem in ecology, regardless of habitat or system, is understanding the relationship between habitats and assemblage of organisms. It is commonly accepted that differences in composition and surrounding landscape of habitats affect the diversity of assemblages, although there is not much empirical evidence because of difficulties of manipulating structure in many habitats. These relationships were examined experimentally, using habitats of artificial turfs that are colonized by diverse assemblages of gastropods. Each habitat was made of nine sub‐habitats, which were sampled individually to allow tests of hypotheses about the effect of type of habitat and the influence of other adjacent sub‐habitats on the colonizing assemblage. Turf habitats were deployed for 8 weeks on a rocky shore after which they were collected and the colonizing assemblages of gastropods sampled. Independently of the types of turfs combined to form different habitats, there were more species where there was more than one type of component in a habitat (i.e. structural diversity). The type of habitat (i.e. structural identity) itself had little or no influence on the colonizing assemblage. The number of species colonizing short‐sparse and short‐dense turfs was influenced by which type of habitat was adjacent. Thus, when units of one type (e.g. short‐sparse turf) were added to a patch of habitat of long‐sparse turfs, the number of species in short‐sparse turfs was greater than in patches of the same type. This also increased total number of taxa in the whole patch of habitat. These results show how diversity of gastropods colonizing heterogeneous patches of habitat is influenced not only by the number of types of sub‐habitats, but also by interactions with surrounding sub‐habitats. These findings reiterate the importance of investigating the role of structure of habitats and of their surrounding landscapes across different systems, irrespective of their size or associated assemblages of organisms.  相似文献   

3.
Domestic species allow us to study dramatic evolutionary changes at an accelerated rate due to the effectiveness of modern breeding techniques and the availability of breeds that have undergone distinct selection pressures. We present a worldwide survey of haplotype variability around a known causative mutation in porcine gene IGF2, which increases lean content. We genotyped 34 SNPs spanning 27 kb in 237 domestic pigs and 162 wild boars. Although the selective process had wiped out variability for at least 27 kb in the haplotypes carrying the mutation, there was no indication of an overall reduction in genetic variability of international vs. European local breeds; there was also no evidence of a reduction in variability caused by domestication. The haplotype structure and a plot of Tajima's D against the frequency of the causative mutation across breeds suggested a temporal pattern, where each breed corresponded to a different selective stage. This was observed comparing the haplotype neighbor-joining (NJ) trees of breeds that have undergone increasing selection pressures for leanness, e.g., European local breeds vs. Pietrain. These results anticipate that comparing current domestic breeds will decisively help to recover the genetic history of domestication and contemporary selective processes.  相似文献   

4.
《Trends in plant science》2023,28(5):597-608
Through domestication of wild species, humans have induced large changes in the developmental and circadian clocks of plants. As a result of these changes, modern crops are more productive and adaptive to contrasting environments from the center of origin of their wild ancestors, albeit with low genetic variability and abiotic stress tolerance. Likewise, a complete restructuring of plant metabolic timekeeping probably occurred during crop domestication. Here, we highlight that contrasting timings among organs in wild relatives of crops allowed them to recognize environmental adversities faster. We further propose that connections among biological clocks, which were established during plant domestication, may represent a fundamental source of genetic variation to improve crop resilience and yield.  相似文献   

5.
Apomixis is a common feature of perennial plants, which occurs in ca. 60% of the British flora, but has been largely ignored by reproductive theoreticians. Successful individuals may cover huge areas, and live to great ages, favoured by 'symmetrical' selection. Apomixis is favoured by colonizing modes, for instance post-glacially. Despite its theoretical advantages, apomixis usually coexists with sexuality, suggesting 'hidden' disadvantages. Agamospermy (apomixis by seed) is relatively uncommon, but gains from the attributes of the seed. It pays agamospermy genes, which discourage recombination, to form co-adapted linkage groups, so that they become targets for disadvantageous recessive mutant accumulation. Consequently, agamospermy genes cannot succeed in diploids and agamosperms are hybrid and highly heterotic. Agamospermous endosperm may suffer from genomic imbalance, so that nutritious ovules, which can support embryos without endosperm, may be preadapted for agamospermy. When primary endosperm nucleus fertilization ('pseudogamy') continues as a requirement for many aposporous agamosperms, selfing sex becomes preadaptive and archesporial sex remains an option. Apomictic populations can be quite variable although apomictic families are much less variable than sexuals. Only in some diplosporous species does sex disappear completely, and in those species some release of variability may persist through somatic recombination. The search for an agamospermy gene suitable for genetic modification should target fertile sexuals with a single localized agamospermy (A) gene, which therefore lack a genetic load. The A gene should coexist alongside sexuality, so that it would be easy to select seedlings of sexual and asexual origins. Plants with sporophytic agamospermy provide all these attributes.  相似文献   

6.
Due to its overexploitation during the past century, Nothofagus nervosa is currently included in conservation and domestication programs, in which ectomycorrhizas play an important role. We aimed to describe the abundance and diversity of ectomycorrhizal fungi (EcMF) in both domesticated and naturally established N. nervosa specimens, and to analyse the influence of age, seasonality and forest management on EcMF communities. The occurrence of arbuscular mycorrhizas (AM) and dark septate endophytes (DSE) was also investigated. Fungal diversity and taxonomic identification were assessed by morphotyping and subsequent ITS-rDNA sequencing. Plant age, seasonality and forest management influenced EcMF communities. Colonization rates were higher than 90 % in all the specimens, and were significantly higher in mature trees and in autumn. The highest EcMF richness and diversity values were registered in domesticated specimens and in autumn. Most EcMF were basidiomycetes, belonging mainly to the Cortinariaceae and Tricholomataceae. Arbuscular mycorrhizas were not detected, while DSE were present within N. nervosa roots. Our results and previously published reports showed that some EcMF are capable of colonizing different Nothofagus species. In addition, the EcMF described in natural ecosystems are different from those colonizing N. nervosa during its cultivation in the nursery. These results improve our understanding of key factors affecting EcMF communities associated with Nothofagus in native forests and nurseries (age, season, forest management, cultivation techniques), and this information is relevant for improving domestication programs.  相似文献   

7.
The extent of molecular differentiation between domesticated animals or plants and their wild relatives is postulated to be small. The availability of the complete genome sequences of two subspecies of the Asian rice, Oryza sativa (indica and japonica) and their wild relatives have provided an unprecedented opportunity to study divergence following domestication. We observed significantly more amino acid substitutions during rice domestication than can be expected from a comparison among wild species. This excess is disproportionately larger for the more radical kinds of amino acid changes (e.g. Cys<-->Tyr). We estimate that approximately a quarter of the amino acid differences between rice cultivars are deleterious, not accountable by the relaxation of selective constraints. This excess is negatively correlated with the rate of recombination, suggesting that 'hitchhiking' has occurred. We hypothesize that during domestication artificial selection increased the frequency of many deleterious mutations.  相似文献   

8.
Duikers were censused at the Ngogo study area, Kibale National Park, Uganda, between July 2002 and August 2004. Censuses were conducted along three transects, of which, two (colonizing forests 1 and 2) were located in colonizing forests naturally replacing anthropogenic grasslands and one in old growth forest. Colonizing forest 1 was more prone to poaching than both colonizing forest 2 and the old growth forest that were closest to the research camp. Duikers that were actually sighted were identified to species, red or blue. However, on some occasions, duikers were detected by alarm calls and/or movements as they fled; these were simply recorded as duikers. Duiker abundance, regardless of species or mode of detection, was higher in colonizing forest 2 than colonizing forest 1 and the old growth forest. However, when the analysis was restricted only to duikers that were sighted, and hence identified to species, red duiker abundance was highest in colonizing forest 2 followed by the old growth forest and was lowest in colonizing forest 1; all these differences were significant. Blue duiker abundance was lowest in the old growth forest despite its proximity to the research camp; however, this was only significantly lower than in colonizing forest 2. Apart from colonizing forest 1, red duikers were significantly more abundant than blue duikers in the other two forest sections. This study suggests that forests colonizing anthropogenic grasslands may support more duikers than old growth forests; poaching in colonizing forest 1 has a severe impact on the duiker population and, red duikers are affected more severely by poaching than blue duikers.  相似文献   

9.
Meiotic recombination is a fundamental process needed for the correct segregation of chromosomes during meiosis in sexually reproducing organisms. In humans, 80% of crossovers are estimated to occur at specific areas of the genome called recombination hotspots. Recently, a protein called PRDM9 was identified as a major player in determining the location of genome-wide meiotic recombination hotspots in humans and mice. The origin of this protein seems to be ancient in evolutionary time, as reflected by its fairly conserved structure in lineages that diverged over 700 million years ago. Despite its important role, there are many animal groups in which Prdm9 is absent (e.g. birds, reptiles, amphibians, diptera) and it has been suggested to have disruptive mutations and thus to be a pseudogene in dogs. Because of the dog's history through domestication and artificial selection, we wanted to confirm the presence of a disrupted Prdm9 gene in dogs and determine whether this was exclusive of this species or whether it also occurred in its wild ancestor, the wolf, and in a close relative, the coyote. We sequenced the region in the dog genome that aligned to the last exon of the human Prdm9, containing the entire zinc finger domain, in 4 dogs, 17 wolves and 2 coyotes. Our results show that the three canid species possess mutations that likely make this gene non functional. Because these mutations are shared across the three species, they must have appeared prior to the split of the wolf and the coyote, millions of years ago, and are not related to domestication. In addition, our results suggest that in these three canid species recombination does not occur at hotspots or hotspot location is controlled through a mechanism yet to be determined.  相似文献   

10.
Comparative studies on the genetic attributes of colonizing orchids with diverse mating systems are lacking in the literature. Eulophia sinensis, Spiranthes hongkongensis, and Zeuxine strateumatica are colonizing orchids that frequently occupy newly created habitats in Hong Kong. Mating system studies showed that E. sinensis is a self-compatible but pollinator-dependent outcrossing species, S. hongkongensis is a self-pollinating taxon, and Z srateumatica is apomictic. Population genetic attributes of these orchid species were investigated. Despite their contrasting mating systems, electrophoretic surveys revealed a striking lack of allozyme variation, both within and among populations, in all three species. However, gene duplications were evident in these species, due to their likely polyploid origins, The percentage of duplicate loci exhibiting "fixed heterozygosity" was 10, 21.4, and 20% in E. sinensis, S. hongkongensis, and Z. strateumatica, respectively. The genetic attributes of these orchids are compared to those found in other colonizing plant species.  相似文献   

11.
Helicobacter pylori is a bacterial pathogen colonizing half of the world's human population. It has been implicated in a number of gastric diseases, from asymptomatic gastritis to cancer. It is characterized by an amazing genetic variability that results from high mutation rates and efficient DNA homologous recombination and transformation systems. Here, we report the characterization of H. pylori RecA (HpRecA), a protein shown to be involved in DNA repair, transformation, and mouse colonization. The biochemical characterization of the purified recombinase reveals activities similar to those of Escherichia coli RecA (EcRecA). We show that in H. pylori, HpRecA is present in about 80,000 copies per cell during exponential growth and decreases to about 50,000 copies in stationary phase. The amount of HpRecA remains unchanged after induction of DNA lesions, suggesting that HpRecA is always expressed at a high level in order to repair DNA damage or facilitate recombination. We performed HpRecA localization analysis by adding a Flag tag to the protein, revealing two different patterns of localization. During exponential growth, RecA-Flag presents a diffuse pattern, overlapping with the DAPI (4',6-diamidino-2-phenylindole) staining of DNA, whereas during stationary phase, the protein is present in more defined areas devoid of DAPI staining. These localizations are not affected by inactivation of competence or DNA recombination genes. Neither UV irradiation nor gamma irradiation modified HpRecA localization, suggesting the existence of a constitutive DNA damage adaptation system.  相似文献   

12.
The genomic landscape of recombination plays an essential role in evolution. Patterns of recombination are highly variable along chromosomes, between sexes, individuals, populations, and species. In many eukaryotes, recombination rates are elevated in sub-telomeric regions and drastically reduced near centromeres, resulting in large low-recombining (LR) regions. The processes of recombination are influenced by genetic factors, such as different alleles of genes involved in meiosis and chromatin structure, as well as external environmental stimuli like temperature and overall stress. In this work, we focused on the genomic landscapes of recombination in a collection of 916 rye (Secale cereale) individuals. By analyzing population structure among individuals of different domestication status and geographic origin, we detected high levels of admixture, reflecting the reproductive biology of a self-incompatible, wind-pollinating grass species. We then analyzed patterns of recombination in overlapping subpopulations, which revealed substantial variation in the physical size of LR regions, with a tendency for larger LR regions in domesticated subpopulations. Genome-wide association scans (GWAS) for LR region size revealed a major quantitative-trait-locus (QTL) at which, among 18 annotated genes, an ortholog of histone H4 acetyltransferase ESA1 was located. Rye individuals belonging to domesticated subpopulations showed increased synaptonemal complex length, but no difference in crossover frequency, indicating that only the recombination landscape is different. Furthermore, the genomic region harboring rye ScESA1 showed moderate patterns of selection in domesticated subpopulations, suggesting that larger LR regions were indirectly selected during domestication to achieve more homogeneous populations for agricultural use.  相似文献   

13.
It has been hypothesized that reproductive isolation should facilitate evolution under domestication. However, a systematic comparison of reproductive barrier strength between crops and their progenitors has not been conducted to test this hypothesis. Here, we present a systematic survey of reproductive barriers between 32 economically important crop species and their progenitors to better understand the role of reproductive isolation during the domestication process. We took a conservative approach, avoiding those types of reproductive isolation that are poorly known for these taxa (e.g., differences in flowering time). We show that the majority of crops surveyed are isolated from their progenitors by one or more reproductive barriers, despite the fact that the most important reproductive barrier in natural systems, geographical isolation, was absent, at least in the initial stages of domestication for most species. Thus, barriers to reproduction between crops and wild relatives are closely associated with domestication and may facilitate it, thereby raising the question whether reproductive isolation could be viewed as a long-overlooked "domestication trait." Some of the reproductive barriers observed (e.g., polyploidy and uniparental reproduction), however, may have been favored for reasons other than, or in addition to, their effects on gene flow.  相似文献   

14.
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population‐scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population‐scaled recombination rate between Gossypium hirsutum and G. arboreum and sub‐genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome‐wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high‐recombination regions than were those of yield and early maturity traits. These results provide insights into the population‐scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.  相似文献   

15.
Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles.  相似文献   

16.
Adaptation of environmental bacteria to laboratory conditions can lead to modification of important traits, what we term domestication. Little is known about the rapidity and reproducibility of domestication changes, the uniformity of these changes within a species or how diverse these are in a single culture. Here, we analysed phenotypic changes in nutrient‐rich liquid media or on agar of four Escherichia coli strains newly isolated through minimal steps from different sources. The laboratory‐cultured populations showed changes in metabolism, morphotype, fitness and in some phenotypes associated with the sigma factor RpoS. Domestication events and phenotypic diversity started to emerge within 2–3 days in replicate subcultures of the same ancestor. In some strains, increased amino acid usage and higher fitness under nutrient limitation resembled those in mutants with the GASP (growth advantage in stationary phase) phenotype. The domestication changes are not uniform across a species or even within a single domesticated population. However, some parallelism in adaptation within repeat cultures was observed. Differences in the laboratory environment also determine domestication effects, which differ between liquid and solid media or with extended stationary phase. Important lessons for the handling and storage of organisms can be based on these studies.  相似文献   

17.
Elucidation of the genetic variability of a model insect species, the grain aphid, Sitobion avenae (Fabricius), a predominantly asexual herbivore within the temperate agro-ecosystem tested, was initiated using molecular DNA markers (RAPDs). This revealed genetic profiles that appeared related to host adaptation at the specific level amongst the natural populations colonizing different grasses and cereals (Poaceae) within the same geographic location. These profiles were recorded either as 'specialist' genotypes found on specific grasses, or as 'generalist' genotypes colonizing several host types including cultivated cereals or native grasses. These findings are compared with analogous systems found amongst insect species, including at a higher trophic level, i.e. interactions between hymenopterous aphid parasitoids. As the aphids and their respective plant hosts occur in the same geographical region at the same time, this appears to be a rare example of the evolutionary transition leading to sympatric speciation in insects. Hence, this study highlights the importance of understanding not only the demographic parameters to genetic diversity, but also the more intricate correlation of genetic diversity to host types in agricultural environments.  相似文献   

18.
Recent technological developments allow investigation of the repeatability of evolution at the genomic level. Such investigation is particularly powerful when applied to a ring species, in which spatial variation represents changes during the evolution of two species from one. We examined genomic variation among three subspecies of the greenish warbler ring species, using genotypes at 13 013 950 nucleotide sites along a new greenish warbler consensus genome assembly. Genomic regions of low within‐group variation are remarkably consistent between the three populations. These regions show high relative differentiation but low absolute differentiation between populations. Comparisons with outgroup species show the locations of these peaks of relative differentiation are not well explained by phylogenetically conserved variation in recombination rates or selection. These patterns are consistent with a model in which selection in an ancestral form has reduced variation at some parts of the genome, and those same regions experience recurrent selection that subsequently reduces variation within each subspecies. The degree of heterogeneity in nucleotide diversity is greater than explained by models of background selection, but is consistent with selective sweeps. Given the evidence that greenish warblers have had both population differentiation for a long period of time and periods of gene flow between those populations, we propose that some genomic regions underwent selective sweeps over a broad geographic area followed by within‐population selection‐induced reductions in variation. An important implication of this ‘sweep‐before‐differentiation’ model is that genomic regions of high relative differentiation may have moved among populations more recently than other genomic regions.  相似文献   

19.
Domestication is an evolutionary process of species divergence in which morphological and physiological changes result from the cultivation/tending of plant or animal species by a mutualistic partner, most prominently humans. Darwin used domestication as an analogy to evolution by natural selection although there is strong debate on whether this process of species evolution by human association is an appropriate model for evolutionary study. There is a presumption that selection under domestication is strong and most models assume rapid evolution of cultivated species. Using archaeological data for 11 species from 60 archaeological sites, we measure rates of evolution in two plant domestication traits—nonshattering and grain/seed size increase. Contrary to previous assumptions, we find the rates of phenotypic evolution during domestication are slow, and significantly lower or comparable to those observed among wild species subjected to natural selection. Our study indicates that the magnitudes of the rates of evolution during the domestication process, including the strength of selection, may be similar to those measured for wild species. This suggests that domestication may be driven by unconscious selection pressures similar to that observed for natural selection, and the study of the domestication process may indeed prove to be a valid model for the study of evolutionary change.  相似文献   

20.
Extraordinarily high rates of recombination have been observed in some eusocial species. The most popular explanation is that increased recombination increases genetic variation among workers, which in turn increases colony performance, for example by increasing parasite resistance. However, support for the generality of higher recombination rates among eusocial organisms remains weak, due to low sample size and a lack of phylogenetic independence of observations. Recombination rate, although difficult to measure directly, is correlated with chromosome number. As predicted, several authors have noted that chromosome numbers are higher among the eusocial species of Hymenoptera (ants, bees and wasps). Here, we present a formal comparative analysis of karyotype data from 1567 species of Hymenoptera. Contrary to earlier studies, we find no evidence for an absolute difference between chromosome number in eusocial and solitary species of Hymenoptera. However, we find support for an increased rate of chromosome number change in eusocial taxa. We show that among eusocial taxa colony size is able to explain some of the variation in chromosome number: intermediate‐sized colonies have more chromosomes than those that are either very small or very large. However, we were unable to detect effects of a number of other colony characteristics predicted to affect recombination rate – including colony relatedness and caste number. Taken together, our results support the view that a eusocial lifestyle has led to variable selection pressure for increased recombination rates, but that identifying the factors contributing to this variable selection will require further theoretical and empirical effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号