共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The doublesex gene of Drosophila melanogaster is the final member of a well characterized hierarchy of genes that controls somatic sex determination and differentiation. The male-specific and female-specific doublesex polypeptides occupy a terminal position in the hierarchy, and thus regulate those genes responsible for the development of sexually dimorphic characteristics of the fly. To investigate the molecular mechanism by which these two related proteins interact with specific target genes, we have identified and characterized their DNA binding domains. Using gel mobility shift experiments with sequentially deleted polypeptides, site-directed mutagenesis and spectrophotometric assays, we have shown that the two doublesex proteins share a common and novel zinc finger-related DNA binding domain distinct from any reported class of zinc binding proteins. We have further shown that of 10 null dsx alleles, six encode proteins deficient in DNA binding activity, and that three of these alleles are the result of mutations that alter cysteine and histidine residues in the metal binding domain. Our results provide evidence that both the male-specific and female-specific doublesex proteins share and depend upon the same DNA binding domain for function in vivo, suggesting that both proteins bind to, but differentially regulate, a common set of genes in both sexes. 相似文献
4.
5.
6.
Shimizu M Murase A Hara M Shindo H Mitchell AP 《The Journal of biological chemistry》2001,276(40):37680-37685
Rme1p plays important roles in the control of meiosis and in cell cycle progression through binding to upstream regions of IME1 and CLN2 in Saccharomyces cerevisiae. Rme1p has three zinc finger segments, and two of them are atypical. To determine DNA binding domain of Rme1p, a series of Rme1p derivatives fused with maltose-binding protein were purified and characterized by gel mobility shift assay. We show that not only three zinc fingers, but also the neighboring C-terminal region is essential for DNA binding. Mutational analysis of this region revealed that basic residues Arg-287, Lys-290, and Arg-291 and the hydrophobic residues Phe-288, Leu-292, Ile-295, and Leu-296 are critical for DNA binding. In addition, double substitutions by proline at Asn-289 and Lys-293, each of which was not essential for DNA binding, abolished DNA binding. These results suggest that the C-terminal segment forms an amphipathic helical structure. Furthermore, it was shown that the mutations in the important basic residues abolish or impair Rme1p function in vivo for repression and inhibition of spore formation. Thus, the C-terminal segment is essential and acts as a novel accessory domain for DNA binding by zinc fingers. 相似文献
7.
8.
9.
10.
11.
The zinc finger motif of Escherichia coli RecQ is implicated in both DNA binding and protein folding
The RecQ family of DNA helicases has been shown to be important for the maintenance of genomic integrity. Mutations in human RecQ genes lead to genomic instability and cancer. Several RecQ family of helicases contain a putative zinc finger motif of the C4 type at the C terminus that has been identified in the crystalline structure of RecQ helicase from Escherichia coli. To better understand the role of this motif in helicase from E. coli, we constructed a series of single mutations altering the conserved cysteines as well as other highly conserved residues. All of the resulting mutant proteins exhibited a high level of susceptibility to degradation, making functional analysis impossible. In contrast, a double mutant protein in which both cysteine residues Cys397 and Cys400 in the zinc finger motif were replaced by asparagine residues was purified to homogeneity. Slight local conformational changes were detected, but the rest of the mutant protein has a well defined tertiary structure. Furthermore, the mutant enzyme displayed ATP binding affinity similar to the wild-type enzyme but was severely impaired in DNA binding and in subsequent ATPase and helicase activities. These results revealed that the zinc finger binding motif is involved in maintaining the integrity of the whole protein as well as DNA binding. We also showed that the zinc atom is not essential to enzymatic activity. 相似文献
12.
13.
Quach JM Walker EC Allan E Solano M Yokoyama A Kato S Sims NA Gillespie MT Martin TJ 《The Journal of biological chemistry》2011,286(6):4186-4198
Osteoblasts and adipocytes are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. cDNA microarrays and quantitative real-time PCR (Q-PCR) were carried out in a differentiating mouse stromal osteoblastic cell line, Kusa 4b10, to identify gene targets of factors that stimulate osteoblast differentiation including parathyroid hormone (PTH) and gp130-binding cytokines, oncostatin M (OSM) and cardiotrophin-1 (CT-1). Zinc finger protein 467 (Zfp467) was rapidly down-regulated by PTH, OSM, and CT-1. Retroviral overexpression and RNA interference for Zfp467 in mouse stromal cells showed that this factor stimulated adipocyte formation and inhibited osteoblast commitment compared with controls. Regulation of adipocyte markers, including peroxisome proliferator-activated receptor (PPAR) γ, C/EBPα, adiponectin, and resistin, and late osteoblast/osteocyte markers (osteocalcin and sclerostin) by Zfp467 was confirmed by Q-PCR. Intra-tibial injection of calvarial cells transduced with retroviral Zfp467 doubled the number of marrow adipocytes in C57Bl/6 mice compared with vector control-transduced cells, providing in vivo confirmation of a pro-adipogenic role of Zfp467. Furthermore, Zfp467 transactivated a PPAR-response element reporter construct and recruited a histone deacetylase complex. Thus Zfp467 is a novel co-factor that promotes adipocyte differentiation and suppresses osteoblast differentiation. This has relevance to therapeutic interventions in osteoporosis, including PTH-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering. 相似文献
14.
The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein 总被引:5,自引:0,他引:5 下载免费PDF全文
F Estruch 《Nucleic acids research》1991,19(18):4873-4877
I have cloned a yeast gene, RGM1, which encodes a proline-rich zinc, finger protein. rgm1 mutants do not show any obvious phenotype but overexpression of RGM1 gene greatly impairs cell growth. The proline-rich region of RGM1 attached to a heterologous DNA binding domain is able to repress the expression of the target gene. RGM1 shares similar zinc finger motifs with the mammalian Egr (early growth response) proteins as well as proline-rich sequences with a high serine and threonine content, suggesting that RGM1 and Egr proteins could have functional similarities. 相似文献
15.
16.
17.
White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. 总被引:14,自引:2,他引:14 下载免费PDF全文
P Ballario P Vittorioso A Magrelli C Talora A Cabibbo G Macino 《The EMBO journal》1996,15(7):1650-1657
18.
A synthetic peptide corresponding to zinc finger 31 of the Xenopus protein Xfin adopts a folded conformation in the presence of zinc. The same peptide in the absence of zinc is not folded in a stable tertiary conformation, as determined by NMR. Binding experiments have shown that the peptide binds non-specifically to DNA only in the presence of zinc. Moreover, competitive DNA binding experiments indicate interaction with 3.9 +/- 0.4 base pairs. 相似文献