首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. The presence of nonvariant antigens (NVAs) limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense was demonstrated for the first time by immunodiffusion and Immunoelectrophoresis. Noncloned and cloned populations were employed in preparation of polyclonal antisera in rabbits and of antigens to be used in the immunologic reactions. The NVAs could be shown best in systems in which hyperimmune rabbit sera (adsorbed with procyclic forms to eliminate antibodies against antigens common to bloodstream form and procyclic stages) were reacted with trypanosomes characterized by heterologous variant-specific antigens (VSAs). The NVAs demonstrated in this study are very likely different from the common parts of VSAs. As has been suggested by experiments with living trypanosomes, at least a part of the NVAs appears to be located on the surface of the bloodstream forms. In these experiments involving the quantitative indirect fluorescent antibody test, the amount of fluorescence recorded for the heterologous system, i.e. ETat 5 trypanosomes incubated with anti-AmTat 1.1 serum, equalled ~3.0% of the fluorescence emitted by the AmTat 1.1 bloodstream forms treated with their homologous antiserum. Evidently, only small amounts of NVAs are present on the surfaces of T. brucei bloodstream forms. In addition to the NVAs, the electrophoresis results suggested the presence of antigenic differences between procyclic stages belonging to different T. brucei stocks.  相似文献   

2.
3.
African trypanosomes have a tightly coordinated cell cycle to effect efficient segregation of their single organelles, the nucleus, flagellum, and kinetoplast. To investigate cell cycle control in trypanosomes, a mitotic cyclin gene (CYC6) has been identified in Trypanosoma brucei. We show that CYC6 forms an active kinase complex with CRK3, the trypanosome CDK1 homologue, in vivo. Using RNA interference, we demonstrate that absence of CYC6 mRNA results in a mitotic block and growth arrest in both the insect procyclic and mammalian bloodstream forms. In the procyclic form, CYC6 RNA interference generates anucleate cells with a single kinetoplast, whereas in bloodstream form trypanosomes, cells with one nucleus and multiple kinetoplasts are observed. Fluorescence-activated cell sorting analysis shows that bloodstream but not procyclic trypanosomes are able to reinitiate nuclear S phase in the absence of mitosis. Taken together, these data show that procyclic trypanosomes can undergo cytokinesis without completion of mitosis, whereas a mitotic block in bloodstream form trypanosomes inhibits cytokinesis but not kinetoplast replication and segregation nor an additional round of nuclear DNA synthesis. This indicates that there are fundamental differences in cell cycle controls between life cycle forms of T. brucei and that key cell cycle checkpoints present in higher eukaryotes are absent from trypanosomes.  相似文献   

4.
The quantitative direct fluorescent antibody (QDFA) methods were employed for the antigenic analysis of bloodstream forms and culture procyclics of 2 variants, TRUM (Trypanosome Research University of of Massachusetts) 106 and TRUM 107, of Trypanosoma brucei brucei. Intact and trypsinized trypanosomes were studied. It was demonstrated that: (A) The specific variant antigens are localized in the surface coat of bloodstream trypomastigotes. (B) In addition to the common antigens shared by bloodstream forms and culture procyclics, there are also certain antigens unique to these latter stages. (C) Still another group of antigens, not found in the culture procyclics, appears to be shared by the bloodstream forms, irrespective of their variant-specific antigens. These antigens may be present in part in the coat or on the cell membrane and in part within the cytoplasm. (D) Irrespective of the bloodstream-form variant from which they are derived, the procyclics are antigenically the same. The QDFA results are analyzed statistically and discussed in the light of the available literature.  相似文献   

5.
The single flagellum of the protozoan parasite Trypanosoma brucei is attached along the length of the cell body by a complex structure that requires the FLA1 protein. We show here that inhibition of FLA1 expression by RNA interference in procyclic trypanosomes causes flagellar detachment and prevents cytokinesis. Despite being unable to divide, these cells undergo mitosis and develop a multinucleated phenotype. The Trypanosoma cruzi FLA1 homolog, GP72, is unable to complement either the flagellar detachment or cytokinesis defects in procyclic T. brucei that have been depleted of FLA1 by RNA interference. Instead, GP72 itself caused flagellar detachment when expressed in T. brucei. In contrast to T. brucei cells depleted of FLA1, procyclic T. brucei expressing GP72 continued to divide despite having detached flagella, demonstrating that flagellar attachment is not absolutely necessary for cytokinesis. We have also identified a FLA1-related gene (FLA2) whose sequence is similar but not identical to FLA1. Inhibition of FLA1 and FLA2 expression in bloodstream T. brucei caused flagellar detachment and blocked cytokinesis but did not inhibit mitosis. These experiments demonstrate that the FLA proteins are essential and suggest that in procyclic T. brucei, the FLA1 protein has separable functions in flagellar attachment and cytokinesis.  相似文献   

6.
The differentiation of mammalian stage Trypanosoma brucei bloodstream forms comprising predominantly parasites of intermediate and stumpy morphology to the procyclic forms characteristic for the insect midgut stage was studied in vitro. Differentiation of the cell population occurred synchronously as judged by the synthesis of the surface glycoprotein, procyclin, characteristic of the arising procyclic forms and the loss of the membrane-form variant surface glycoprotein, the coat protein of bloodstream forms. The change in surface antigens took place within 12 h in the absence of cell growth; subsequently, the procyclic cells divided exponentially. As defined in this study, T. brucei may be a useful model to follow other changes in gene expression, metabolism or ultrastructure during differentiation of a unicellular eucaryote.  相似文献   

7.
8.
Protozoan Kinetoplastida, a group that comprises the pathogenic Trypanosoma brucei, compartmentalize several metabolic systems such as the major part of the glycolytic pathway, in multiple peroxisome-like organelles, designated glycosomes. Trypanosomes have a complicated life cycle, involving two major, distinct stages living in the mammalian bloodstream and several stages inhabiting different body parts of the tsetse fly. Previous studies on non-differentiating trypanosomes have shown that the metabolism and enzymatic contents of glycosomes in bloodstream-form and cultured procyclic cells, representative of the stage living in the insect's midgut, differ considerably. In this study, the morphology of glycosomes and their position relative to the lysosome were followed, as were the levels of some glycosomal enzymes and markers for other subcellular compartments, during the differentiation from bloodstream-form to procyclic trypanosomes. Our studies revealed a small tendency of glycosomes to associate with the lysosome when a population of long-slender bloodstream forms differentiated into short-stumpy forms which are pre-adapted to live in the fly. The same phenomenon was observed during the short-stumpy to procyclic transformation, but then the process was fast and many more glycosomes were associated with the dramatically enlarged degradation organelle. The observations suggested an efficient glycosome turnover involving autophagy. Changes observed in the levels of marker enzymes are consistent with the notion that, during differentiation, glycosomes with enzymatic contents specific for the old life-cycle stage are degraded and new glycosomes with different contents are synthesized, causing that the metabolic repertoire of trypanosomes is, at each stage, optimally adapted to the environmental conditions encountered.  相似文献   

9.
SYNOPSIS The quantitative direct fluorescent antibody (QDFA) methods were employed for the antigenic analysis of bloodstream forms and culture procyclics of 2 variants, TRUM (Trypanosome Research University of Massachusetts) 106 and TRUM 107, of Trypanosoma brucei brucei. Intact and trypsinized trypanosomes were studied. It was demonstrated that: (A) The specific variant antigens are localized in the surface coat of bloodstream trypomastigotes. (B) In addition to the common antigens shared by bloodstream forms and culture procyclics, there are also certain antigens unique to these latter stages. (C) Still another group of antigens. not found in the culture procyclics, appears to be shared by the bloodstream forms, irrespective of their variant-specific antigens. These antigens may be present in part in the coat or on the cell membrane and in part within the cytoplasm. (D) Irrespective of the bloodstream-form variant from which they are derived, the procyclics are antigenically the same. The QDFA results are analyzed statistically and discussed in the light of the available literature.  相似文献   

10.
Gel electrophoresis, lectin affinity blotting, and endoglycosidase H digestion have been used to analyze the glycoprotein profiles of bloodstream and procyclic forms of Trypanosoma brucei brucei and T. b. gambiense. Proteins resolved by polyacrylamide gel electrophoresis were stained with silver nitrate or electrophoretically transferred to nitrocellulose and probed with a horseradish peroxidase conjugate of either concanavalin A or wheat germ agglutinin. Silver staining showed, as expected, that the expression of the variant specific glycoprotein was restricted to the bloodstream forms. Twenty-three concanavalin A binding proteins were resolved in blots of bloodstream forms. Concanavalin A binding molecules corresponding in electrophoretic mobility to 21 of these 23 bloodstream form glycoproteins were detected in blots of procyclic forms. The two concanavalin A binding glycoproteins present only in bloodstream form extracts were variant specific glycoprotein and an 81-kDa protein designated glycoprotein 81b. One concanavalin A binding molecule of 84 kDa, glycoprotein 84p, was detected only in procyclic forms. The 19 major wheat germ agglutinin binding glycoproteins expressed by bloodstream forms were not detected in procyclic forms; only small proteins or protein fragments in procyclic form extracts bound wheat germ agglutinin. Incubating transferred proteins in endoglycosidase H eliminated subsequent binding of concanavalin A to most of the 22 common glycoproteins of bloodstream forms. Three major concanavalin A binding glycoproteins of bloodstream forms, variant specific glycoprotein, glycoprotein 81b, and a 110-kDa molecule (glycoprotein 110b), and other minor glycoproteins carried sugar chains that resisted endoglycosidase H digestion. In contrast, concanavalin A did not bind to any procyclic form glycoproteins, including a 110-kDa concanavalin A binding molecule (glycoprotein 110p) after endoglycosidase H treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Actin is expressed at similar levels but in different locations in bloodstream and procyclic forms of Trypanosoma brucei. In bloodstream forms actin colocalizes with the highly polarized endocytic pathway, whereas in procyclic forms it is distributed throughout the cell. RNA interference demonstrated that in bloodstream forms, actin is an essential protein. Depletion of actin resulted in a rapid arrest of cell division, termination of vesicular traffic from the flagellar pocket membrane leading to gross enlargement of the pocket, loss of endocytic activity and eventually cell death. These results indicate that actin is required for the formation of coated vesicles from the flagellar pocket membrane, which is the first step in the endocytic pathway. Although loss of actin in procyclic cells did not affect growth, the trans region of the Golgi became distorted and enlarged and appeared to give rise to a heterogeneous population of vesicles. However, the flagellar pocket was not affected. These findings suggest that trypanosomes have different functional requirements for actin during the bloodstream and procyclic phases of the life cycle.  相似文献   

12.
A Trypanosoma brucei brucei stock resistant to diminazene aceturate, isometamidium chloride, quinapyramine sulfate, and Mel B was grown in vitro and its response to these drugs compared to that of a drug-sensitive trypanosome stock. There was little if any change of drug sensitivity after in vitro propagation as bloodstream forms for 120, 177, and 275 days and after in vitro transformation of bloodstream forms into procyclic, epimastigote, and finally metacyclic forms. Drug resistance was stable during in vitro maintenance in the absence of drugs in both culture systems. The response of resistant and sensitive T. b. brucei to diminazene in vitro correlated with their sensitivity pattern in vivo. Thus, in vitro techniques can be used to study drug resistance in trypanosomes.  相似文献   

13.
The genome of the African trypanosome Trypanosoma brucei (Tb) contains at least three gene families (TbMSP-A, -B, and -C) encoding homologues of the abundant major surface protease (MSP, previously called GP63), which is found in all Leishmania species. TbMSP-B mRNA occurs in both procyclic and bloodstream trypanosomes, whereas TbMSP-A and -C mRNAs are detected only in bloodstream organisms. RNA interference (RNAi)-mediated gene silencing was used to investigate the function of TbMSP-B protein. RNAi directed against TbMSP-B but not TbMSP-A ablated the steady state TbMSP-B mRNA levels in both procyclic and bloodstream cells but had no effect on the kinetics of cultured trypanosome growth in either stage. Procyclic trypanosomes have been shown previously to have an uncharacterized cell surface metalloprotease activity that can release ectopically expressed surface proteins. To determine whether TbMSP-B is responsible for this release, transgenic variant surface glycoprotein 117 (VSG117) was expressed constitutively in T. brucei procyclic TbMSP-RNAi cell lines, and the amount of surface VSG117 was determined using a surface biotinylation assay. Ablation of TbMSP-B but not TbMSP-A mRNA resulted in a marked decrease in VSG release with a concomitant increase in steady state cell-associated VSG117, indicating that TbMSP-B mediates the surface protease activity of procyclic trypanosomes. This finding is consistent with previous pharmacological studies showing that peptidomimetic collagenase inhibitors block release of transgenic VSG from procyclic trypanosomes and are toxic for bloodstream but not procyclic organisms.  相似文献   

14.
Trypanosoma brucei genes encoding putative fatty acid synthesis enzymes are homologous to those encoding type II enzymes found in bacteria and organelles such as chloroplasts and mitochondria. It was therefore not surprising that triclosan, an inhibitor of type II enoyl-acyl carrier protein (enoyl-ACP) reductase, killed both procyclic forms and bloodstream forms of T. brucei in culture with 50% effective concentrations (EC(50)s) of 10 and 13 microM, respectively. Triclosan also inhibited cell-free fatty acid synthesis, though much higher concentrations were required (EC(50)s of 100 to 200 microM). Unexpectedly, 100 microM triclosan did not affect the elongation of [(3)H]laurate (C(12:0)) to myristate (C(14:0)) in cultured bloodstream form parasites, suggesting that triclosan killing of trypanosomes may not be through specific inhibition of enoyl-ACP reductase but through some other mechanism. Interestingly, 100 microM triclosan did reduce the level of incorporation of [(3)H]myristate into glycosyl phosphatidylinositol species (GPIs). Furthermore, we found that triclosan inhibited fatty acid remodeling in a cell-free assay in the same concentration range required for killing T. brucei in culture. In addition, we found that a similar concentration of triclosan also inhibited the myristate exchange pathway, which resides in a distinct subcellular compartment. However, GPI myristoylation and myristate exchange are specific to the bloodstream form parasite, yet triclosan kills both the bloodstream and procyclic forms. Therefore, triclosan killing may be due to a nonspecific perturbation of subcellular membrane structure leading to dysfunction in sensitive membrane-resident biochemical pathways.  相似文献   

15.
When procyclic trypanosomes of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense were cultivated in Nunclon 25 cm2 flasks at 27 C in a liquid medium containing various tissue explants of Phormia regina Meigen, some of them developed into forms infective for mice. The infective stages were present at various periods of up to 29 days when the cultures were terminated. Larger numbers of explants of head-salivary glands than the other tissues used were required to produce infections. Infectivity titrations on trypanosome suspensions of T. b. brucei TRUM 252 and T. b. rhodesiense TRUM 497 indicated that only a small proportion of the populations was infective. Mice were rarely infected with trypanosomes grown in medium without explants. Only 1 mouse of the 11 inoculated developed a parasitemia from a control culture of T. b. rhodesiense TRUM 545. A few trypanosomes resembling epimastigotes and metacyclic forms were seen in stained samples of infective inocula.  相似文献   

16.
17.
18.
Protozoan Kinetoplastida such as the pathogenic trypanosomes compartmentalize several important metabolic systems, including the glycolytic pathway, in peroxisome-like organelles designated glycosomes. Genes for three proteins involved in glycosome biogenesis of Trypanosoma brucei were identified. A preliminary analysis of these proteins, the peroxins PEX6, PEX10 and PEX12, was performed. Cellular depletion of these peroxins by RNA interference affected growth of both mammalian bloodstream-form and insect-form (procyclic) trypanosomes. The bloodstream forms, which rely entirely on glycolysis for their ATP supply, were more rapidly killed. Both by immunofluorescence studies of intact procyclic T. brucei cells and subcellular fractionation experiments involving differential permeabilization of plasma and organellar membranes it was shown that RNAi-dependent knockdown of the expression of each of these peroxins resulted in the partial mis-localization of different types of glycosomal matrix enzymes to the cytoplasm: proteins with consensus motifs such as the C-terminal type 1 peroxisomal targeting signal PTS1 or the N-terminal signal PTS2 and a protein for which the sorting information is present in a polypeptide-internal fragment not containing an identifiable consensus sequence.  相似文献   

19.
The parasitic protozoa Trypanosoma brucei has a complex life cycle. Oxidative phosphorylation is highly active in the procyclic form but absent from bloodstream cells. The mitochondrial genome encodes several gene products that are required for oxidative phosphorylation, but it completely lacks tRNA genes. For mitochondrial translation to occur, the import of cytosolic tRNAs is therefore essential for procyclic T. brucei. Whether the same is true for the bloodstream form has not been studied so far. Here we show that the steady-state levels of mitochondrial tRNAs are essentially the same in both life stages. Editing of the imported tRNA(Trp) also occurs in both forms as well as in mitochondria of Trypanosoma evansi, which lacks a genome and a translation system. These results show that mitochondrial tRNA import is a constitutive process that must be mediated by proteins that are expressed in both forms of the life cycle and that are not encoded in the mitochondrial genome. Moreover, bloodstream cells lacking either mitochondria-specific translation elongation factor Tu or mitochondrial tryptophanyl-tRNA synthetase are not viable indicating that mitochondrial translation is also essential in this stage. Both of these proteins show trypanosomatid-specific features and may therefore be excellent novel drug targets.  相似文献   

20.
The mitochondrial H(+)-ATPase of the parasitic protozoan Trypanosoma brucei is shown to be developmentally regulated through the T. brucei life cycle as has been shown for components of the mitochondrial electron transport chain. We have substantiated our results by assaying not only for oligomycin-sensitive ATPase activity but also by determining the level of ATP synthetic activity. These results show that the level of ATPase present in the procyclic form of T. brucei is increased by at least threefold from that of the early bloodstream form while the ATPase activity in the late bloodstream form is only about twofold higher than the early form. ATP synthesis activity shows these same results. We have determined the level of ATP synthase protein present in the life cycle stages by Western analysis employing the antibodies that we have raised against both the water soluble F1 and the membrane-associated F0 moieties which we have purified from T. brucei. The Western blots of the procyclic form show strong reactivity with both the F0 and F1 antibodies. The other two life cycle stages, the early and the late bloodstream forms, show considerably less reactivity, paralleling the activity results. Electron micrographs of the sonicated mitochondrial fraction show inverted vesicles which are studded with knobby H(+)-ATPase in the procyclic form. The early bloodstream vesicles show very few of these characteristic structures, while the late bloodstream form shows a range of vesicles from nearly nude to partially studded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号