首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Herpesviruses use gB and gH-gL glycoproteins to execute fusion. Other virus-specific glycoproteins are required for receptor binding and fusion activation. The human cytomegalovirus (HCMV) UL131-128 proteins are essential for the infection of leukocytes, endothelial cells (ECs), and many epithelial cell lines. Here we show that UL131-128 play a role in a chain of events involving gB and gH during HCMV entry into ECs. An HCMV strain bearing the wild-type (wt) UL131-128 locus exhibited a gB transition from a protease-resistant to protease-sensitive form, a conformational change that was suppressed by a thiourea inhibitor of fusion (WY1768); in contrast, gH was susceptible to proteolysis throughout entry. Moreover, gB and gH transiently interacted, and a lipid mixing assay showed that the wt strain had carried out fusion by 60 min postinfection. However, these events were greatly altered when UL131-128-defective strains were used for infection or when there was an excess of soluble pUL128 during wt infection: the gB conformational change became WY1768 resistant, the gB-gH complex was no longer observed, and fusion was prevented. Both gB and gH in this case showed late protease resistance, related to their endocytic uptake. Our data point to the involvement of UL131-128 proteins in driving gB through a WY1768-sensitive fold transition, thus promoting a short-lived gB-gH complex and fusion; they also suggest that HCMV fuses with the EC plasma membrane and that endocytosis ensues only when the virus cannot trigger UL131-128-dependent steps.  相似文献   

3.
Lopper M  Compton T 《Journal of virology》2004,78(15):8333-8341
Human cytomegalovirus (CMV) utilizes a complex route of entry into cells that involves multiple interactions between viral envelope proteins and cellular receptors. Three conserved viral glycoproteins, gB, gH, and gL, are required for CMV-mediated membrane fusion, but little is known of how these proteins cooperate during entry (E. R. Kinzler and T. Compton, submitted for publication). The goal of this study was to begin defining the molecular mechanisms that underlie membrane fusion mediated by herpesviruses. We identified heptad repeat sequences predicted to form alpha-helical coiled coils in two glycoproteins required for fusion, gB and gH. Peptides derived from gB and gH containing the heptad repeat sequences inhibited virus entry when introduced coincident with virus inoculation onto cells or when mixed with virus prior to inoculation. Neither peptide affected binding of CMV to fibroblasts, suggesting that the peptides inhibit membrane fusion. Both gB and gH coiled-coil peptides blocked entry of several laboratory-adapted and clinical strains of human CMV, but neither peptide affected entry of murine CMV or herpes simplex virus type 1 (HSV-1). Although murine CMV and HSV-1 gB and gH have heptad repeat regions, the ability of human CMV gB and gH peptides to inhibit virus entry correlates with the specific residues that comprise the heptad repeat region. The ability of gB and gH coiled-coil peptides to inhibit virus entry independently of cell contact suggests that the coiled-coil regions of gB and gH function differently from those of class I, single-component fusion proteins. Taken together, these data support a critical role for alpha-helical coiled coils in gB and gH in the entry pathway of CMV.  相似文献   

4.
Herpesviruses are a large order of animal enveloped viruses displaying a virion fusion mechanism of unusual complexity. Their multipartite machinery has a conserved core made of the gH/gL ancillary complexes and the homo-trimeric fusion protein glycoprotein B (gB). Despite its essential role in starting the viral infection, gB interaction with membrane lipids is still poorly understood. Here, evidence is provided demonstrating that human cytomegalovirus (HCMV) gB depends on the S-palmitoylation of its endodomain for an efficient interaction with cholesterol-rich membrane patches. We found that, unique among herpesviral gB proteins, the HCMV fusion factor has a Cys residue in the C-terminal region that is palmitoylated and mediates methyl-β-cyclodextrin-sensitive self-association of purified gB. A cholesterol-dependent virus-like particle trap assay, based on co-expression of the HIV Gag protein, confirmed that this post-translational modification is functional in the context of cellular membranes. Mutation of the palmitoylated Cys residue to Ala or inhibition of protein palmitoylation decreased HCMV gB export via Gag particles. Moreover, purified gBC777A showed an increased kinetic sensitivity in a cholesterol depletion test, demonstrating that palmitoyl-gB limits outward cholesterol diffusion. Finally, gB palmitoylation was required for full fusogenic activity in human epithelial cells. Altogether, these results uncover the palmitoylation of HCMV gB and its role in gB multimerization and activity.  相似文献   

5.
Human cytomegalovirus (HCMV) is a prototypic member of the betaherpesvirus family. The HCMV virion is composed of a large DNA genome encapsidated within a nucleocapsid, which is wrapped within an inner proteinaceous tegument and an outer lipid envelope containing viral glycoproteins. Although genome encapsidation clearly occurs in the nucleus, the subsequent steps in the virion assembly process are unclear. HCMV glycoprotein B (gB) is a major component of the virion envelope that plays a critical role in virus entry and is essential for the production of infectious virus progeny. The aim of our present study was to identify the secretory compartment to which HCMV gB was localized and to investigate the role of endocytosis in mediating gB localization and HCMV biogenesis. We show that HCMV gB is localized to the trans-Golgi network (TGN) in HCMV-infected cells and that gB contains all of the trafficking information necessary for TGN localization. Endocytosis of gB was shown to play a role in mediating TGN localization of gB and in targeting of the protein to the site of virus envelopment. However, inhibition of endocytosis with a dominant-negative dynamin I molecule did not affect the production of infectious virus. These observations indicate that, although endocytosis is involved in the trafficking of gB to the site of glycoprotein accumulation in the TGN, endocytosis of gB is not required for the production of infectious HCMV.  相似文献   

6.
Human cytomegalovirus (HCMV) is a widespread opportunistic pathogen that causes birth defects in newborns and severe disease in immunocompromised individuals. The broad tropism of HCMV infection suggests that it uses multiple receptors. We recently showed that the epidermal growth factor receptor (EGFR) serves as a receptor for HCMV. Here we show that HCMV also uses integrin alphavbeta3 as a coreceptor. Upon infection, HCMV glycoproteins gB and gH independently bind to EGFR and alphavbeta3, respectively, to initiate viral entry and signaling. Alphavbeta3 then translocates to lipid rafts where it interacts with EGFR to induce coordinated signaling. The coordination between EGFR and alphavbeta3 is essential for the early events of HCMV infection, including viral entry, RhoA downregulation, stress-fiber disassembly and viral nuclear trafficking. Our findings support a model in which EGFR and alphavbeta3 work together as coreceptors for HCMV entry and signaling. This discovery is fundamental to understanding HCMV pathogenesis and developing treatment strategies targeted to viral receptors.  相似文献   

7.
Herpesvirus entry into cells requires coordinated interactions among several viral glycoproteins. The final membrane fusion step of entry is executed by glycoprotein B (gB), a class III viral fusion protein that is conserved across all herpesviruses. Fusion proteins are metastable proteins that mediate fusion by inserting into a target membrane and refolding from a prefusion to postfusion conformation to bring the viral and cell membranes together. Although the structure of gB has been solved in a conformation that likely represents its postfusion form, its prefusion structure and the details of how it refolds to execute fusion are unknown. The postfusion gB structure contains a trimeric coiled-coil at its core and a long C-terminal arm within the ectodomain packs against this coil in an antiparallel manner. This coil-arm complex is reminiscent of the six-helix bundle that provides the energy for fusion in class I fusogens. To determine the role of the coil-arm complex, we individually mutated residues in the herpes simplex virus 1 gB coil-arm complex to alanine and assessed the contribution of each residue to cell-cell and virus-cell fusion. Several coil mutations resulted in a loss of cell surface expression, indicating that the coil residues are important for proper processing of gB. Three mutations in the arm region (I671A, H681A, and F683A) reduced fusion without affecting expression. Combining these three arm mutations drastically reduced the ability of gB to execute fusion; however, fusion function could be restored by adding known hyperfusogenic mutations to the arm mutant. We propose that the formation of the coil-arm complex drives the gB transition to a postfusion conformation and the coil-arm complex performs a function similar to that of the six-helix bundle in class I fusion. Furthermore, we suggest that these specific mutations in the arm may energetically favor the prefusion state of gB.  相似文献   

8.
Human cytomegalovirus (HCMV), a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB), thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies.  相似文献   

9.
Membrane fusion during the entry of herpesviruses is carried out by the viral fusogen gB that is activated by its partner protein gH in some manner. The fusogenic activity of gB is controlled by its cytoplasmic (or intraviral) domain (gBCTD) and, according to the current model, the gBCTD is a trimeric, inhibitory clamp that restrains gB in the prefusion conformation. But how the gBCTD clamp is released by gH is unclear. Here, we identified two new regulatory elements within gB and gH from the prototypical herpes simplex virus 1: a surface pocket within the gBCTD and residue V831 within the gH cytoplasmic tail. Mutagenesis and structural modeling suggest that gH V831 interacts with the gB pocket. The gB pocket is located above the interface between adjacent protomers, and we hypothesize that insertion of the gH V831 wedge into the pocket serves to push the protomers apart, which releases the inhibitory clamp. In this manner, gH activates the fusogenic activity of gB. Both gB and gH are conserved across all herpesviruses, and this activation mechanism could be used by other gB homologs. Our proposed mechanism emphasizes a central role for the cytoplasmic regions in regulating the activity of a viral fusogen.  相似文献   

10.
Human cytomegalovirus (HCMV) glycoprotein B (gB), encoded by the UL55 open reading frame, is an essential envelope glycoprotein involved in cell attachment and entry. Previously, we identified residue serine 900 (Ser900) as a unique site of reversible casein kinase 2 phosphorylation in the cytoplasmic domain of HCMV gB. We have also recently shown that gB is localized to the trans-Golgi network (TGN) in HCMV-permissive cells, thereby identifying the TGN as a possible site of virus envelopment. The aim of the current study was to determine the role of Ser900 phosphorylation in transport of gB to the TGN and in HCMV biogenesis. Recombinant HCMV strains were constructed that expressed gB molecules containing either an aspartic acid (gBAsp900) or alanine residue (gBAla900) substitution at Ser900 to mimic the phosphorylated or nonphosphorylated form, respectively. Immunofluorescence analysis of the trafficking of gB mutant molecules in fibroblasts infected with the HCMV recombinants revealed that gBAsp900 was localized to the TGN. In contrast, gBAla900 was partially mislocalized from the TGN, indicating that phosphorylation of gB at Ser900 was necessary for TGN localization. The increased TGN localization of gBAsp900 was due to a decreased transport of the molecule to post-TGN compartments. Remarkably, the substitution of an aspartic acid residue for Ser900 also resulted in an increase in levels of progeny virus production during HCMV infection of fibroblasts. Together, these results demonstrate that phosphorylation of gB at Ser900 is necessary for gB localization to the TGN, as well as for efficient viral replication, and further support the TGN as a site of HCMV envelopment.  相似文献   

11.
Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.  相似文献   

12.
Human cytomegalovirus (HCMV) infects about 50% of the US population, is the leading infectious cause of birth defects, and is considered the most important infectious agent in transplant recipients. The virus infects many cell types in vivo and in vitro. While previous studies have identified several cellular proteins that may function at early steps of infection in a cell type dependent manner, the mechanism of virus entry is still poorly understood. Using a computational biology approach, correlating gene expression with virus infectivity in 54 cell lines, we identified THY-1 as a putative host determinant for HCMV infection in these cells. With a series of loss-of-function, gain-of-function and protein-protein interaction analyses, we found that THY-1 mediates HCMV infection at the entry step and is important for infection that occurs at a low m.o.i. THY-1 antibody that bound to the cell surface blocked HCMV during the initial 60 minutes of infection in a dose-dependent manner. Down-regulation of THY-1 with siRNA impaired infectivity occurred during the initial 60 minutes of inoculation. Both THY-1 antibody and siRNA inhibited HCMV-induced activation of the PI3-K/Akt pathway required for entry. Soluble THY-1 protein blocked HCMV infection during, but not after, virus internalization. Expression of exogenous THY-1 enhanced entry in cells expressing low levels of the protein. THY-1 interacted with HCMV gB and gH and may form a complex important for entry. However, since gB and gH have previously been shown to interact, it is uncertain if THY-1 directly binds to both of these proteins. Prior observations that THY-1 (a) interacts with αVβ3 integrin and recruits paxillin (implicated in HCMV entry), (b) regulates leukocyte extravasation (critical for HCMV viremia), and (c) is expressed on many cells targeted for HCMV infection including epithelial and endothelial cells, fibroblast, and CD34+/CD38- stem cells, all support a role for THY-1 as an HCMV entry mediator in a cell type dependent manner. THY-1 may function through a complex setting, that would include viral gB and gH, and other cellular factors, thus links virus entry with signaling in host cells that ultimately leads to virus infection.  相似文献   

13.
Epithelial cells are known to be a major target for human cytomegalovirus (HCMV) infection; however, the analysis of virus-cell interactions has been difficult to approach due to the lack of in vitro models. In this study, we established a polarized epithelial cell model using a colon epithelial cell-derived cell line (Caco-2) that is susceptible to HCMV infection at early stages of cellular differentiation. Infection of polarized cells was restricted to the basolateral surface whereas virus was released apically, which was consistent with the apical and not basolateral surface localization of two essential viral glycoproteins, gB and gH. HCMV infection resulted in the development of a cytopathology characteristic of HCMV infection of colon epithelium in vivo, and infection did not spread from cell to cell. The inability of HCMV to infect Caco-2 cells at late stages of differentiation was due to a restriction at the level of viral entry and was consistent with the sequestration of a cellular receptor for HCMV. These observations provide the first evidence that restriction of HCMV replication in epithelial cells is due to a receptor-mediated phenomenon.  相似文献   

14.
Glycoprotein B (gB) of human cytomegalovirus (HCMV), which is considered essential for the viral life cycle, is proteolytically processed during maturation. Since gB homologues of several other herpesviruses remain uncleaved, the relevance of this property of HCMV gB for viral infectivity is unclear. Here we report on the construction of a viral mutant in which the recognition site of gB for the cellular endoprotease furin was destroyed. Because mutagenesis of essential proteins may result in a lethal phenotype, a replication-deficient HCMV gB-null genome encoding enhanced green fluorescent protein was constructed, and complementation by mutant gBs was initially evaluated in transient-cotransfection assays. Cotransfection of plasmids expressing authentic gB or gB with a mutated cleavage site (gB-DeltaFur) led to the formation of green fluorescent miniplaques which were considered to result from one cycle of phenotypic complementation of the gB-null genome. To verify these results, two recombinant HCMV genomes were constructed: HCMV-BAC-DeltaMhdI, with a deletion of hydrophobic domain 1 of gB that appeared to be essential for viral growth in the cotransfection experiments, and HCMV-BACDeltaFur, in which the gB cleavage site was mutated by amino acid substitution. Consistent with the results of the cotransfection assays, only the DeltaFur mutant replicated in human fibroblasts, showing growth kinetics comparable to that of wild-type virus. gB in mutant-infected cells was uncleaved, whereas glycosylation and transport to the cell surface were not impaired. Extracellular mutant virus contained exclusively uncleaved gB, indicating that proteolytic processing of gB is dispensable for viral replication in cell culture.  相似文献   

15.
The human cytomegalovirus (HCMV) glycoprotein B (gB) (also known as gpUL55) homolog is an important mediator of virus entry and cell-to-cell dissemination of infection. To examine the potential ligand-binding properties of gB, a soluble form of gB (gB-S) was radiolabeled, purified, and tested in cell-binding experiments. Binding of gB-S to human fibroblast cells was found to occur in a dose-dependent, saturable, and specific manner. Scatchard analysis demonstrated a biphasic plot with the following estimated dissociation constants (Kd): Kd1, 4.96 × 10−6 M; Kd2, 3.07 × 10−7 M. Cell surface heparan sulfate proteoglycans (HSPGs) were determined to serve as one class of receptors able to facilitate gB-S binding. Both HSPG-deficient Chinese hamster ovary (CHO) cells and fibroblast cells with enzymatically removed HSPGs had 40% reductions in gB-S binding, whereas removal of chondroitin sulfate had no effect. However, a significant proportion of gB-S was able to associate with the cell surface in the absence of HSPGs via an undefined nonheparin component. Binding affinity analysis of gB-S binding to wild-type CHO-K1 cells demonstrated biphasic binding kinetics (Kd1, 9.85 × 10−6 M; Kd2, 4.03 × 10−8 M), whereas gB-S binding to HSPG-deficient CHO-677 cells exhibited single-component binding kinetics (Kd, 7.46 × 10−6 M). Together, these data suggest that gB-S associates with two classes of cellular receptors. The interaction of gB with its receptors is physiologically relevant, as evidenced by an inhibitory effect on HCMV entry when cells were pretreated with purified gB-S. This inhibition was determined to be manifested at the level of virus attachment. We conclude that gB is a ligand for HCMV that mediates an interaction with a cellular receptor(s) during HCMV infection.Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is present in approximately 80% of the adult population, as demonstrated by seroreactivity (3, 23). Primary HCMV infection of persons with intact immune systems often results in a self-limiting asymptomatic disease, while HCMV is a significant human pathogen for immunocompromised individuals that is often manifested as severe and debilitating sequelae (2). Despite its importance as a pathogen, limited antiviral therapies exist, due in part to a lack of detailed knowledge of the virus lifecycle.HCMV infection requires that a viral envelope glycoprotein(s) and the respective cellular receptor(s) engage in a synchronized series of interactions, ultimately resulting in fusion of the viral envelope with the plasma membrane. Initial attachment of HCMV to permissive host cells is dependent upon the presence of cell surface heparan sulfate proteoglycans (HSPGs) (14, 43). Heparin affinity chromatography identified two HCMV glycoprotein complexes that possess the ability to bind immobilized heparin (14, 26). The HCMV glycoprotein complex II (gC-II) was described to be the major HCMV envelope protein complex retained on the heparin matrix, while a lesser proportion of glycoprotein B (gB) (also known as gpUL55) was bound (26). Due to the lack of a manipulable genetic system for HCMV, to date there has been no effective manner by which to evaluate independently the functional relevance of heparin binding for gB or gC-II. This initial heparin-dissociable binding state is rapidly converted to a stable attachment, suggesting that HCMV absorption involves a sequential association with multiple cellular receptors (14). After stable attachment to the cell surface, a direct pH-independent fusion event occurs between the viral envelope and the plasma membrane (13). Two HCMV envelope glycoprotein complexes, gB and gH-gL (also known as gpUL75-gpUL115), are crucial components in mediating fusion events required for subsequent virus entry. The identity of cellular receptors for stable binding or of fusion facilitators is not known, although a number of candidates have been proposed (1, 28, 29, 52, 53).HCMV gB is a 906-amino-acid protein encoded by the UL55 open reading frame (12, 16). The gB precursor is synthesized as a 105-kDa protein, which matures into a 130- to 160-kDa glycoprotein by acquiring N-linked glycosylation modifications in the endoplasmic reticulum and Golgi network (6, 7). The cellular protease furin cleaves the mature gB into two components, a 93- to 116-kDa amino-terminal fragment and a 55-kDa carboxy-terminal fragment (60). These two fragments have been shown to associate as a disulfide-linked monomer (53, 54) which is presented on the viral envelope as well as on the surface of virus-infected cells as a covalently associated homodimer (9). gB is the most abundant constituent of the viral envelope and is a potent immunogenic HCMV protein (8, 35).gB has the potential to be a multifunctional regulator of HCMV entry. As described above, HCMV gB is a putative viral ligand in that it possesses heparin-binding capacity (perhaps critical in the initial attachment phase) and is involved in virus penetration and cell-to-cell spread. Neutralizing anti-gB monoclonal antibodies significantly blocked viral fusion events, including penetration and cell-to-cell transmission, while viral attachment remained unaffected (41). Similarly, U373 glioblastoma cells constitutively expressing gB formed multinucleated syncytia, a process which was effectively precluded by the addition of neutralizing anti-gB antibodies (59). In an effort to address the receptor-binding properties of gB, we tested a recombinant soluble form of gB (gB-S) in cellular binding experiments. Previously, we showed that the gB-S protein retained features attributable to the viral protein in that it was dimeric, properly folded, and bound to a heparin affinity matrix (11). Our results presented here demonstrate that gB-S does exhibit conventional ligand properties and may engage more than one class of receptors on the surfaces of both fibroblast and wild-type Chinese hamster ovary (CHO) cells. Cell surface HSPGs were determined to be one receptor for the recombinant gB molecule, since gB-S binding was reduced when these molecules were absent; however, a second HSPG-independent binding site was also implicated. Treatment of cells with gB-S inhibited virus entry and infection, supporting a physiological relevance for the interaction of gB with its cellular receptor(s).  相似文献   

16.
Herpes simplex virus (HSV) glycoprotein B (gB) is an integral part of the multicomponent fusion system required for virus entry and cell-cell fusion. Here we investigated the mechanism of viral neutralization by the monoclonal antibody (MAb) 2c, which specifically recognizes the gB of HSV type 1 (HSV-1) and HSV-2. Binding of MAb 2c to a type-common discontinuous epitope of gB resulted in highly efficient neutralization of HSV at the postbinding/prefusion stage and completely abrogated the viral cell-to-cell spread in vitro. Mapping of the antigenic site recognized by MAb 2c to the recently solved crystal structure of the HSV-1 gB ectodomain revealed that its discontinuous epitope is only partially accessible within the observed multidomain trimer conformation of gB, likely representing its postfusion conformation. To investigate how MAb 2c may interact with gB during membrane fusion, we characterized the properties of monovalent (Fab and scFv) and bivalent [IgG and F(ab')(2)] derivatives of MAb 2c. Our data show that the neutralization capacity of MAb 2c is dependent on cross-linkage of gB trimers. As a result, only bivalent derivatives of MAb 2c exhibited high neutralizing activity in vitro. Notably, bivalent MAb 2c not only was capable of preventing mucocutaneous disease in severely immunodeficient NOD/SCID mice upon vaginal HSV-1 challenge but also protected animals even with neuronal HSV infection. We also report for the first time that an anti-gB specific monoclonal antibody prevents HSV-1-induced encephalitis entirely independently from complement activation, antibody-dependent cellular cytotoxicity, and cellular immunity. This indicates the potential for further development of MAb 2c as an anti-HSV drug.  相似文献   

17.
The conserved herpesvirus fusion complex consists of glycoproteins gB, gH, and gL which is critical for virion envelope fusion with the cell membrane during entry. For Varicella Zoster Virus (VZV), the complex is necessary for cell-cell fusion and presumed to mediate entry. VZV causes syncytia formation via cell-cell fusion in skin and in sensory ganglia during VZV reactivation, leading to neuronal damage, a potential contributory factor for the debilitating condition of postherpetic neuralgia. The gH cytoplasmic domain (gHcyt) is linked to the regulation of gB/gH-gL-mediated cell fusion as demonstrated by increased cell fusion in vitro by an eight amino acid (aa834-841) truncation of the gHcyt. The gHcyt regulation was identified to be dependent on the physical presence of the domain, and not of specific motifs or biochemical properties as substitution of aa834-841 with V5, cMyc, and hydrophobic or hydrophilic sequences did not affect fusion. The importance of the gHcyt length was corroborated by stepwise deletions of aa834-841 causing incremental increases in cell fusion, independent of gH surface expression and endocytosis. Consistent with the fusion assay, truncating the gHcyt in the viral genome caused exaggerated syncytia formation and significant reduction in viral titers. Importantly, infection of human skin xenografts in SCID mice was severely impaired by the truncation while maintaining the gHcyt length with the V5 substitution preserved typical replication in vitro and in skin. A role for the gHcyt in modulating the functions of the gB cytoplasmic domain (gBcyt) is proposed as the gHcyt truncation substantially enhanced cell fusion in the presence of the gB[Y881F] mutation. The significant reduction in skin infection caused by hyperfusogenic mutations in either the gHcyt or gBcyt demonstrates that both domains are critical for regulating syncytia formation and failure to control cell fusion, rather than enhancing viral spread, is severely detrimental to VZV pathogenesis.  相似文献   

18.
Paired immunoglobulin-like type 2 receptor α (PILRα) is a herpes simplex virus 1 (HSV-1) entry receptor that associates with O-glycans on HSV-1 envelope glycoprotein B (gB). Two threonine residues (Thr-53 and Thr-480) in gB, which are required for the addition of the principal gB O-glycans, are essential for binding to soluble PILRα. However, the role of the two threonines in PILRα-dependent viral entry remains to be elucidated. Therefore, we constructed a recombinant HSV-1 carrying an alanine replacement of gB Thr-53 alone (gB-T53A) or of both gB Thr-53 and Thr-480 (gB-T53/480A) and demonstrated that these mutations abrogated viral entry in CHO cells expressing PILRα. In contrast, the mutations had no effect on viral entry in CHO cells expressing known host cell receptors for HSV-1 gD, viral entry in HL60 cells expressing myelin-associated glycoprotein (MAG) (another HSV-1 gB receptor), viral attachment to heparan sulfate, and viral replication in PILRα-negative cells. These results support the hypothesis that gB Thr-53 and Thr-480 as well as gB O-glycosylation, probably at these sites, are critical for PILRα-dependent viral entry. Interestingly, following corneal inoculation in mice, the gB-T53A and gB-T53/480A mutations significantly reduced viral replication in the cornea, the development of herpes stroma keratitis, and neuroinvasiveness. The abilities of HSV-1 to enter cells in a PILRα-dependent manner and to acquire specific carbohydrates on gB are therefore linked to an increase in viral replication and virulence in the experimental murine model.Herpes simplex virus 1 (HSV-1) entry into host cells depends on interactions between cell surface receptors and HSV-1 virion envelope glycoproteins (39). Five of the 12 HSV-1 envelope glycoproteins that have been identified thus far (i.e., glycoprotein B [gB], gC, gD, gH, and gL) have roles in viral entry (39). Both gB and gC mediate virion attachment by interacting with cell surface glycosaminoglycan, primarily heparan sulfate (16, 17). Although not essential for entry, this step provides stable interactions between the virion and the cell that favor the next steps (39). These steps include gD binding to one of its identified receptors, i.e., herpesvirus entry mediator (HVEM), nectin-1, and specific sites on heparan sulfate 3-O-sulfated heparan sulfate (3-O-S-HS) generated by certain 3-O-sulfotransferases (3-O-STs) (14, 28, 38, 51). Subsequent fusion between the virion envelope and host cell membrane, which requires the cooperative function of gB, heterodimer gH/gL, gD, and a gD receptor, then produces nucleocapsid penetration into the cell (31, 46).In addition to the interaction of gD with a gD receptor, gB binding to a cellular receptor other than heparan sulfate has been suggested to mediate viral entry, based on the observation that a soluble form of gB binds to heparan sulfate-deficient cells and blocks HSV-1 infection of some cell lines (3). Consistent with this observation, we have reported that paired immunoglobulin-like type 2 receptor α (PILRα) associates with gB and functions as an HSV-1 entry receptor (36). Viral entry via PILRα appears to be conserved among alphaherpesviruses, but there is a PILRα preference based on the observation that PILRα is able to mediate the entry of pseudorabies virus, a porcine alphaherpesvirus, but not of HSV-2 (1). Importantly, HSV-1 infection of human primary monocytes expressing both HVEM and PILRα was blocked by either an anti-PILRα or anti-HVEM antibody, suggesting that cellular receptors for both gD and gB are required for HSV-1 infection (36). However, CHO-K1 cells, which are resistant to HSV-1 infection, can become susceptible to HSV-1 entry and HSV-1-induced cell fusion after the overexpression of either a gD receptor, such as nectin-1, or PILRα (14, 36). It was thought that CHO-K1 cells express endogenously low levels of gB and gD receptors that allow the single overexpression of either a gB or gD receptor to support detectable levels of HSV-1 entry and HSV-1-induced cell fusion (36). More recently, myelin-associated glycoprotein (MAG), which has homology to PILRα, was also reported to serve as the gB receptor for HSV-1 and varicella-zoster virus (40). However, the importance of PILRα- or MAG-dependent viral entry in HSV-1 infection and pathogenesis in vivo remains to be elucidated.PILRα is one of the paired receptor families, in which one receptor has inhibitory functions and the other mediates activation functions, and is expressed mainly in immune system cells (13, 29). In addition, PILRα was previously reported to be expressed in certain types of cells in neural tissues (36). We previously identified one of the PILRα ligands as CD99 (37). Interestingly, PILRα recognition of CD99 is dependent on the addition of sialylated O-linked sugar chains at particular CD99 threonines (50). Similarly, we recently demonstrated that a specific sialylated O-glycan(s) on gB is critical for PILRα binding, based on observations that neuraminidase, which removes sialic acid, and benzyl-α-GalNAc treatment, which blocks O-glycan synthesis, inhibited gB binding to a soluble PILRα (49). More importantly, one (Thr-53) or both (Thr-53 and Thr-480) putative O-glycosylation sites identified by bioinformatics analysis are required for the binding of gB to soluble PILRα, and the replacement of both Thr-53 and Thr-480 with alanine significantly inhibited the addition of O-glycans to gB (49). These observations suggest that Thr-53 and Thr-480 in gB are O-glycosylated, and these sites, and probably the addition of specific carbohydrates to them, are required for the interaction of gB with PILRα. However, it remains uncertain whether gB Thr-53 and Thr-480, and probably the gB O-glycosylation of these sites, are required for PILRα-dependent viral entry in natural infections.In the present study, we have shown that the alanine replacement of gB Thr-53 (gB-T53A) alone or of both gB Thr-53 and Thr-480 (gB-T53/480A) significantly inhibited cell-cell fusion in CHO cells expressing PILRα, gB, gD, gH, and gL, whereas the mutations had no effect on cell-cell fusion in CHO cells expressing nectin-1, gB, gD, gH, and gL. Furthermore, we constructed recombinant HSV-1 carrying the gB-T53A and gB-T53/480A mutations and found that these mutations abrogated PILRα-dependent viral entry but had no effect on viral entry via known receptors for HSV-1 gD and MAG, viral attachment to heparan sulfate, and viral replication in PILRα-negative cells. We also tested these recombinant viruses in mice and present data showing that the mutations in gB significantly reduced viral replication, the development of herpes stromal keratitis (HSK), and neuroinvasiveness.  相似文献   

19.
Entry of herpes simplex virus (HSV) into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive. As the prefusion conformation of gB is a critical target for neutralizing antibodies, we set out to describe its structure by making genetic insertions of fluorescent proteins (FP) throughout the gB ectodomain. We created gB constructs with FP insertions in each of the three globular domains of gB. Among 21 FP insertion constructs, we found 8 that allowed gB to remain membrane fusion competent. Due to the size of an FP, regions in gB that tolerate FP insertion must be solvent exposed. Two FP insertion mutants were cell-surface expressed but non-functional, while FP insertions located in the crown were not surface expressed. This is the first report of placing a fluorescent protein insertion within a structural domain of a functional viral fusion protein, and our results are consistent with a model of prefusion HSV gB constructed from the prefusion VSV G crystal structure. Additionally, we found that functional FP insertions from two different structural domains could be combined to create a functional form of gB labeled with both CFP and YFP. FRET was measured with this construct, and we found that when co-expressed with gH/gL, the FRET signal from gB was significantly different from the construct containing CFP alone, as well as gB found in syncytia, indicating that this construct and others of similar design are likely to be powerful tools to monitor the conformation of gB in any model system accessible to light microscopy.  相似文献   

20.
Crump CM  Hung CH  Thomas L  Wan L  Thomas G 《Journal of virology》2003,77(20):11105-11113
The final envelopment of herpesviruses during assembly of new virions is thought to occur by the budding of core viral particles into a late secretory pathway organelle, the trans-Golgi network (TGN), or an associated endosomal compartment. Several herpesvirus envelope glycoproteins have been previously shown to localize to the TGN when expressed independently from other viral proteins. In at least some cases this TGN localization has been shown to be dependent on clusters of acidic residues within their cytoplasmic domains. Similar acidic cluster motifs are found in endogenous membrane proteins that also localize to the TGN. These acidic cluster motifs interact with PACS-1, a connector protein that is required for the trafficking of proteins containing such motifs from endosomes to the TGN. We show here that PACS-1 interacts with the cytoplasmic domain of the HCMV envelope glycoprotein B (gB) and that PACS-1 function is required for normal TGN localization of HCMV gB. Furthermore, inhibition of PACS-1 activity in infected cells leads to a decrease in HCMV titer, whereas an increase in expression of functional PACS-1 leads to an increase in HCMV titer, suggesting that PACS-1 is required for efficient production of HCMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号