首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The survival of human parainfluenza virus types 1, 2, and 3 was measured in both indoor and outdoor environments at South Pole Station, Antarctica, in an effort to determine the long-term survival of these viruses in this environment and to identify the possible source of respiratory tract illnesses which occurred in this isolated population in 1978 after 10 and 27 weeks of total social isolation. Viruses were applied to plastic petri plate surfaces which were then stored in indoor (21.4 degrees C; water vapor density, 1.50 g of water per m3) and outdoor environments (-22.4 to -33.2 degrees C; water vapor density, 0.706 and 0.247 g of water per m3). Parainfluenza virus type 1 at an initial titer of 3.75 log10 50% tissue culture infective doses per ml was inactivated after 4 days at room temperature and after 7 days outside. Parainfluenza virus type 2 and 3 at initial titers of 5.58 and 5.38 log10 50% tissue culture infective doses per ml were inactivated after 7 and 12 days, respectively, at room temperature and after 17 days of storage outside. Results indicate that the long-term survival of parainfluenza virus in either environment for up to 10 weeks is unlikely and probably did not provide the source of infectious virus responsible for the midisolation outbreaks of parainfluenza virus-related respiratory tract illnesses observed in this population during the 1978 winter season.  相似文献   

2.
The survival of human parainfluenza virus types 1, 2, and 3 was measured in both indoor and outdoor environments at South Pole Station, Antarctica, in an effort to determine the long-term survival of these viruses in this environment and to identify the possible source of respiratory tract illnesses which occurred in this isolated population in 1978 after 10 and 27 weeks of total social isolation. Viruses were applied to plastic petri plate surfaces which were then stored in indoor (21.4 degrees C; water vapor density, 1.50 g of water per m3) and outdoor environments (-22.4 to -33.2 degrees C; water vapor density, 0.706 and 0.247 g of water per m3). Parainfluenza virus type 1 at an initial titer of 3.75 log10 50% tissue culture infective doses per ml was inactivated after 4 days at room temperature and after 7 days outside. Parainfluenza virus type 2 and 3 at initial titers of 5.58 and 5.38 log10 50% tissue culture infective doses per ml were inactivated after 7 and 12 days, respectively, at room temperature and after 17 days of storage outside. Results indicate that the long-term survival of parainfluenza virus in either environment for up to 10 weeks is unlikely and probably did not provide the source of infectious virus responsible for the midisolation outbreaks of parainfluenza virus-related respiratory tract illnesses observed in this population during the 1978 winter season.  相似文献   

3.
A chick embryo-adapted strain of avian encephalomyelitis virus was inoculated subcutaneously and orally into 40-day-old (middle-aged) and 110-day-old (advanced-aged) chicks to examine the behavior of the virus in the chick body. In the middle-aged chicks, the virus appeared in the muscle at the site of inoculation, liver, spleen, pancreas, lumbar and cervical portions of the spinal cord, and brain 1 approximately 9 days after subcutaneous inoculation, and remained mostly in the central nervous system up to 17 days after the inoculation. The virus was found in large amounts in the muscle at the site of inoculation (10(3.1)), lumbar portion (10(2.5)) and cervical portion (10(2.1)) of the spinal cord, brain (10(1.9)), and in minute amounts in the other organs examined. It appeared in 11 of 21 organs examined. In the middle-aged chicks inoculated by the oral route, the virus was detected transiently in small amounts from esophagus, pancreas, and rectum 4 approximately 14 days after inoculation. In the advanced-aged chicks inoculated by the subcutaneous route, the virus was detected in titer of 10(2.1) approximately 10(3.0) from the muscle at the site of inoculation 2 approximately 7 days after inoculation. The virus was also found sporadically in several organs up to 17 days after inoculation. In the advanced-aged chicks inoculated by the oral route, no virus appeared in any organ, but these chicks turned to be weakly positive for neutralizing antibody in the 4th or later week after inoculation.  相似文献   

4.
The VR strain of avian encephalomyelitis virus, which had been adapted to embryonated hen's eggs, was inoculated into 2-day-old chicks by the subcutaneous route (10(2.5) approximately 10(3.0) EID50) or by the oral route (10(4.8) EID50). The chicks were examined chronologically for the distribution of the virus in the body. As a result, minute amounts of the virus were detected from the liver, spleen, pancreas, and muscle at the site of inoculation one day after inoculation and various amounts from almost all the organs 3 days and more after inoculation. The virus titer could nearly reach a maximum 7 to 9 days after inoculation. Above all, such high virus titers as ranging from 10(4.3) to 10(5.8) EID50/0.1 g were demonstrated in the brain, heart, liver, spleen, and pancreas. After that, there was a tendency for virus titer to decrease in most organs and for virus to multiply persistently in the pancreas, brain, and eyeball. Virus titer was maintained at a level of 10(2.3) approximately 10(2.8) EID50/0.1 g in these three organs even 21 days after inoculation. In the group of subcutaneous inoculation, all the chicks manifested clinical signs of infection 5 to 10 days after inoculation. On the other hand, no chicks were involved in clinical infection in the group of oral inoculation. Multiplication of the virus was delayed in the body of these chicks. Small amounts of the virus were detected from the spleen and pancreas 11 days after inoculation. Low titers (10(2.7) EID50/0.1 g at the highest) of the virus were only detected from the brain, spinal cord, spleen, pancreas, esophagus, and other organs 14 and 21 days after inoculation.  相似文献   

5.
The minimum acquisition period of velvet tobacco mottle virus (VTMoV) by its mirid vector Cyrtopeltis nicotianae was about 1 min, with an increase in the rate of transmission (i.e. proportion of test plants infected) for acquisition periods up to 1000 min. Pre-acquisition starvation periods up to 18 h did not affect the rate of transmission. After an acquisition access period of 2 days, the minimum inoculation period was between 1 and 2 h and the rate of transmission increased with increasing inoculation time; when the acquisition access period was 1 h, or if vectors were fasted for 16 h after the 2 day acquisition, the rate of transmission was significantly lower. When mirids were transferred sequentially each day to a healthy plant after a 24 h acquisition feed, they transmitted intermittently for up to 10 days. Up to 50% of mirids transmitted after a moult and this was not due to the mirids probing the shed cuticles or exudates of infective insects. Mirids transmitted after a moult, following acquisition periods of 10, 100 or 1000 min. C. nicotianae transmitted solanum nodiflorum mottle virus (SNMV), sowbane mosaic virus (SoMV) and southern bean mosaic virus (SBMV), but not subterranean clover mottle virus (SCMoV), lucerne transient streak virus (LTSV), tobacco ringspot virus (TRSV), galinsoga mosaic virus (GMV), nor nicotiana velutina mosaic virus (NVMV). Tomato bushy stunt virus (TBSV) was transmitted to 1/58 test plants.  相似文献   

6.
Radiolabeled Lymantria dispar nuclear polyhedrosis virus DNA probes were used in a DNA hybridization assay to detect the presence of viral DNA in extracts from infected larvae. Total DNA was extracted from larvae, bound to nitrocellulose filters, and assayed for the presence of viral DNA by two methods: slot-blot vacuum filtration and whole-larval squashes. To test the assays, neonate larvae were fed droplets containing a known concentration of L. dispar nuclear polyhedrosis virus and observed for up to 10 days to determine the percentage of infected larvae. The average percent mortalities were 88.0, 60.7, 26.0, and 5.3% for larvae fed droplets containing 4.0 x 10(4), 1.0 x 10(4), 2.5 x 10(3), and 6.25 x 10(2) polyhedral inclusion bodies (PIBs) per ml, respectively. Other larvae treated with the same virus concentrations were frozen at 2, 4, and 6 days postinoculation and examined by the hybridization techniques. The average percentage of slot blots containing viral DNA equaled 81.0, 58.0, 18.0, and 6.0% for larvae blotted 4 days after treatment with 4.0 x 10(4), 1.0 x 10(4), 2.5 x 10(3), and 6.25 x 10(2) PIBs per ml, respectively, and 89.9, 52.1, 26.6, and 6.0%, respectively at 6 days postinoculation. Thus, the hybridization results were closely correlated with mortality observed in reared larvae. Hybridization of squashes of larvae frozen 4 days after receiving the above virus treatments also produced accurate measures of the incidence of virus infection.  相似文献   

7.
Radiolabeled Lymantria dispar nuclear polyhedrosis virus DNA probes were used in a DNA hybridization assay to detect the presence of viral DNA in extracts from infected larvae. Total DNA was extracted from larvae, bound to nitrocellulose filters, and assayed for the presence of viral DNA by two methods: slot-blot vacuum filtration and whole-larval squashes. To test the assays, neonate larvae were fed droplets containing a known concentration of L. dispar nuclear polyhedrosis virus and observed for up to 10 days to determine the percentage of infected larvae. The average percent mortalities were 88.0, 60.7, 26.0, and 5.3% for larvae fed droplets containing 4.0 x 10(4), 1.0 x 10(4), 2.5 x 10(3), and 6.25 x 10(2) polyhedral inclusion bodies (PIBs) per ml, respectively. Other larvae treated with the same virus concentrations were frozen at 2, 4, and 6 days postinoculation and examined by the hybridization techniques. The average percentage of slot blots containing viral DNA equaled 81.0, 58.0, 18.0, and 6.0% for larvae blotted 4 days after treatment with 4.0 x 10(4), 1.0 x 10(4), 2.5 x 10(3), and 6.25 x 10(2) PIBs per ml, respectively, and 89.9, 52.1, 26.6, and 6.0%, respectively at 6 days postinoculation. Thus, the hybridization results were closely correlated with mortality observed in reared larvae. Hybridization of squashes of larvae frozen 4 days after receiving the above virus treatments also produced accurate measures of the incidence of virus infection.  相似文献   

8.
To understand the molecular determinants of measles virus (MV) virulence, we have used the SCID-hu thymus/liver xenograft model (SCID-hu thy/liv) in which in vivo MV virulence phenotypes are faithfully duplicated. Stromal epithelial and monocytic cells are infected by MV in thymus implants, and virulent strains induce massive thymocyte apoptosis, although thymocytes are not infected. To determine whether passage of an avirulent vaccine strain in human tissue increases virulence, we studied a virus isolated from thymic tissue 90 days after infection with the vaccine strain Moraten (pMor-1) and a virus isolated from an immunodeficient child with progressive vaccine-induced disease (Hu2). These viruses were compared to a minimally passaged wild-type Edmonston strain (Ed-wt) and the vaccine strain Moraten. pMor-1, Hu2, and Ed-wt displayed virulent phenotypes in thymic implants, with high levels of virus being detected by 3 days after infection (10(5.2), 10(2.8), and 10(3. 4), respectively) and maximal levels being detected between 7 and 14 days after infection. In contrast, Moraten required over 14 days to grow to detectable levels. pMor-1 produced the highest levels of virus throughout infection, suggesting thymic adaptation of this strain. Similar to other virulent strains, Ed-wt, Hu2, and pMor-1 caused a decrease in the number of viable thymocytes as assessed by trypan blue exclusion and fluorescence-activated cell sorter analysis. Thymic architecture was also disrupted by these strains. Sequence analysis of the hemagglutinin (H) and matrix (M) genes showed no common changes in Hu2 and pMor-1. M sequences were identical in pMor-1 and Mor and varied in H at amino acid 469 (threonine to alanine), a position near the base of propeller 4 in the propeller blade/stem model of H structure. Further study will provide insights into the determinants of virulence.  相似文献   

9.
Aino virus (AIV; JaNAr 28 strain) 103 TCID50/0.2 ml was inoculated in the yolk sac of 8-day-old chick embryos. Recovery and titration of the virus from various organs including the central nervous system (CNS) and skeletal muscle were performed at 2, 4, 7, 10 and 13 days after inoculation (PI). AIV was systemically disseminated and proliferated even 2 days PI. The titers of the recovered virus from the CNS and from skeletal muscle was the highest at 4 days PI and declined with time, whereas hydranencephaly, arthrogryposis and cerebellar hypoplasia developed at 7 days PI and gradually progressed until 13 days PI.  相似文献   

10.
肠道传播的非甲非乙型肝炎病人粪便排病毒规律的检测   总被引:2,自引:0,他引:2  
曹学义  刘崇柏 《病毒学报》1989,5(2):188-190
  相似文献   

11.
To determine whether treatment with melatonin (MLT) improves the efficiency of immunization against Venezuelan equine encephalomyelitis (VEE) virus, mice were vaccinated with TC-83 VEE virus and treated daily with MLT (1 or 5 mg/kg) starting 3 days before immunization, until 10 days after. IgM antibody titers were determined at days 7, 14, and 21 post-immunization. IL-10 levels were assayed at day 14 postvaccination. Treatment with MLT increased antibody titers 14 days after the immunization. IL-10 levels also increased with MLT treatment (1 and 5 mg/kg). Mice were challenged with live VEE virus at day 21 postimmunization, and viral titers were plaque assayed in chicken embryo fibroblasts 4 days after the infection. Following this challenge brain virus levels were significantly reduced. The results suggest that MLT treatment enhances the efficiency of mice immunization against VEE virus.  相似文献   

12.
The persistence of a previously characterized spumavirus strain (strain SV-522) was investigated utilizing various laboratory media and waters, including Eagle's minimal essential medium (EMEM) plus 0% fetal bovine serum (EMEM-0%), EMEM-2%, EMEM-10%, Chlamydia transport medium (CTM), phosphate-buffered saline, distilled, estuarine, and marine water, human serum, and the germicides, ethyl alcohol (70%) and sodium hypochlorite (10%). Experiments were performed at 4 degrees C and/or 23 degrees C. Infectivity endpoints were determined in stock aliquots upon initiation of testing and then after 3, 5, 7, and 10 days. The virus was reisolated from all diluents after 5 days at 23 degrees C and in EMEM-10% after 7 days. The virus was detected in CTM, EMEM-2%, EMEM-10%, and estuarine and marine waters after 7 days at 4 degrees C. Differences in the persistence of the virus may be ascribed to temperature and organic load. Water ionic strengths (e.g., estuarine vs. marine water) had no effect on modifying persistence of viral particles. Infectivity of spumavirus was undetectable after 30 s in 70% ethanol or 10% sodium hypochlorite. After 30 min at 23 degrees C, spumavirus infectivity in normal but not heat-inactivated human serum increased by almost 100-fold. Persistence of infectivity of primate spumavirus after 7 days in media and waters, and the agent's infectious potential in the human host, emphasize a need for cautious recognition during the manipulation of primate cells/organs and in the handling of primates themselves.  相似文献   

13.
A study was performed to determine if type C influenza infection could be established in dogs as a model for human cases. Mongrel dogs were infected with the Ann Arbor/1/50 strain of type C influenza virus and were examined for clinical symptoms, virus isolation and antibody response. After the first exposure to the virus, all infected animals developed nasal discharge and some of them also showed swelling of the eyelids, and suffusion of the eyes with tears and eye mucus, within 1 to 4 days. The animals showed an increase in hemagglutination-inhibiting (HI) serum antibody, and recovery of the agent from the nasal swabs was successful. The symptoms lasted for as long as 10 days in most infected dogs, which was comparable to our human cases reported previously (Katagiri, S., Ohizumi, A., and Homma, M. 1983. J. Infect. Dis. 48 : 51–56). After the second and third virus exposures at intervals of 50 days, all animals developed the same symptoms as those described above and the rise in antibody titer was evident. The virus could be recovered from four of the six dogs 2 to 5 days after the second exposure and from one dog as late as 10 days after the third exposure. Increases in antibody titer in the IgM fraction were observed after every infection. In control dogs which were mock-infected with UV-inactivated virus, no symptoms were evident and recovery of the virus was not successful although an increase in HI serum antibody titer was seen. These results show that mongrel dogs are sensitive to type C influenza virus and that repeated infections characteristic of human influenza C can be experimentally produced in dogs.  相似文献   

14.
15.
Enzyme-linked immunosorbent assay was used to monitor the concentration of barley yellow dwarf virus (BYDV) in roots and leaves of oats inoculated at the 1 - 2 leaf stage and at the 4 - 5 leaf stage, respectively. Virus was detectable 20 h after inoculation in the roots and after 48 h in the leaves of plants inoculated at the 1 - 2 leaf stage. The virus concentration reached a plateau in the roots after 7–8 days, and was 3–4 times higher than in the leaves. In plants inoculated at the 4 - 5 leaf stage virus was detectable in roots and leaves after 3 and 5 days, respectively. The concentration reached a maximum after 10 days in the roots and after 18 days in the leaves; the concentration in the leaves was 2–3 times higher than in the roots. Virus was readily detectable in seeds from infected plants, both fresh and old dried seeds. However, seed transmission could not be demonstrated. Virus-like particles were first observed in phloem cells of roots 4 days after inoculation, but no ultrastructural changes were detected at this stage. After 5–6 days, disintegrated nuclei and virus-induced vesicles were observed in many cells and abnormal production of callose was found after 10 days. Necrotic phloem cells were observed from day 13, shortly after the appearance of external symptoms.  相似文献   

16.
An indigenous betabaculovirus (PapyGV) of the Pandemis leafroller, Pandemis pyrusana (Kearfott), was studied in the laboratory and greenhouse to determine how the virus affected leafroller mortality and foliar damage. Probability of mortality increased with virus concentration as observed after 7 and 10 days of feeding on virus treated diet in neonates and second instar larvae. LC50 estimates for neonates at 7 and 10 days was 2743 and 389 occlusion bodies (OBs)/mm2. For second instars, LC50 was 139,487 and 813 OBs/mm2 at 7 and 10 days. There was no biologically significant mortality response to increasing virus concentrations by fourth instar larvae; however, when fourth instar larvae were infected with virus on diet and then fed apple leaves, the leaf area consumed declined up to 50% with higher virus concentrations. In a greenhouse study, neonate larvae that fed on seedlings treated with water showed >90% survival and 80% pupation rate of larvae after being transferred to diet. In contrast, larvae that fed on apple seedlings sprayed with 3×106 OBs/ml showed poor survival when transferred to diet after acquiring the virus and failed to reach the pupal stage. This virus shows promise for population regulation and can produce reduction in feeding damage.  相似文献   

17.
Replication of Herpes-Type Virus in a Burkitt Lymphoma Cell Line   总被引:8,自引:2,他引:6       下载免费PDF全文
Replication of the herpes-type virus in the P3HR-1 Burkitt lymphoma cell line was studied. The cell cultures with 10(6) viable cells/ml were incubated at 33 C for 15 days. The amount of virus in both the cell and fluid portions of the cultures was determined by the loop-drop particle-counting procedure with electron microscopy. An apparent growth curve of the virus was constructed. The maximal cell-associated virus, 10(10) virus particles in an 80-ml culture, was observed after 9 days of incubation. The maximal extracellular virus, 2.5 x 10(9) particles per culture, was observed at the 12th day. About 10% of the released virus particles were enveloped. Under these conditions, there was little or no cell multiplication, but the percentage of immunofluorescent cells reactive to a selected human serum (probably indicating the presence of virus in the cells) increased to a maximum of 50% at the 9th day.  相似文献   

18.
The efficacy of the new nucleoside analogue acyclovir against B virus (Herpesvirus simiae) was investigated in rabbits and Vero cells infected with 2-136 and 0.3-1.0 TCD50 of the virus respectively. In the Vero cells 1 mg of acyclovir/1 reduced the yield of virus by 90%, which was slightly less than the effect on herpes simplex virus. Results in the rabbits varied with the interval between doses, duration of treatment, and delay before starting treatment. Acyclovir controlled an otherwise lethal infection when given not less than eight-hourly for 14 days. Withdrawing treatment after 9-10 days resulted in late-onset fatal disease in some rabbits. Treatment begun within 24 hours after infection gave complete protection, and rabbits first treated up to five days after infection showed a significant reduction in mortality (p less than 0.001). The plasma half life of acyclovir is twice as long in man as in rabbits and progression of the disease is much slower. Hence acyclovir may be useful for post-exposure prophylaxis against B virus infection in man and possibly also for treatment of the disease.  相似文献   

19.
Strains of Sindbis virus differ in their virulence for mice of different ages; this variation is related in large part to variations in the amino acid compositions of E1 and E2, the surface glycoproteins. The comparative pathogenesis of Sindbis virus strains which are virulent or avirulent for newborn mice has not been previously examined. We have studied the diseases caused by a virulent wild-type strain, AR339, and two less virulent laboratory strains, Toto1101 and HRSP (HR small plaque). After peripheral inoculation of 1,000 PFU, AR339 causes 100% mortality within 5 days (50% lethal dose [LD50] = 3 PFU) while Toto1101 causes 70% mortality (LD50 = 10(2.4) PFU) and HRSP causes 50 to 60% mortality (LD50 = 10(5.1) PFU) with most deaths occurring 7 to 11 days after infection. However, after intracerebral inoculation of 1,000 PFU, Toto1101 is virulent (100% mortality within 5 days; LD50 = 4 PFU) while HRSP is not (75% mortality; LD50 = 10(4.2) PFU). After intracerebral inoculation, all three strains initiate new virus formation within 4 h, but HRSP reaches a plateau of 10(6) PFU/g of brain while Toto1101 and AR339 replicate to a level of 10(8) to 10(9) PFU/g of brain within 24 h. Interferon induction parallels virus growth. Mice infected with HRSP develop persistent central nervous system infection (10(6) PFU/g of brain) until the initiation of a virus-specific immune response 7 to 8 days after infection when virus clearance begins. The distribution of virus in the brains of mice was similar, but the virus was more abundant in the case of AR339. HRSP continued to spread until day 9. Clearance from the brain was complete by day 17. We conclude that the decreased virulence of HRSP is due to an intrinsic decreased ability of this strain of Sindbis virus to grow in neural cells of the mouse. We also conclude that CD-1 mice do not respond to the antigens of Sindbis virus until approximately 1 week of age. This lack of response does not lead to tolerance and persistent infection but rather to late virus clearance whenever the immune response is initiated.  相似文献   

20.
Resistant C57BL/6J and susceptible DBA/2J mice were exposed to aerosols of Sendai virus and killed at intervals to 12 days. Lungs were removed and assayed for infectious virus and interferon. Mean virus titers were 6 to 400 times higher in DBA/2J mice than in C57BL/6J mice 3 to 10 days after exposure. Mean interferon titers were 10 to 140 times higher in DBA/2J mice than in C57BL/6J mice 4 to 7 days after exposure. These results suggest that genetic resistance to the lethal effects of Sendai virus is expressed through control of viral replication within the first 72 hours of infection and that early expression of inherited resistance is not regulated by interferon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号