首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
House mice carrying aberrant chromosome 1 with an insertion of homogeneously stained regions (HSR) have been studied. The mice were collected in the North Caucasus, Chita and Amur oblasts, Spitzbergen and Kunashir Islands, Altai krai, Khabarovsk krai, Primorye, Sakhalin, Kamchatka, Turkmenistan, and Kazakhstan. In these mice, the aberrant chromosomes were assigned to the “Asian” type, i.e. they carried two HSR insertions. The aberrant chromosome 1 in house mice from different geographic regions was shown to differ in size of HSR, staining intensity, and some other features of Q-H, C, and G-banding, which suggests independent origin of this aberration in house mouse populations from different taxa and regions. A novel variant of chromosome 1 in mice of the subspecies M. m. wagneri was found.  相似文献   

2.
A high resolution analysis of G-band pattern of normal and aberrant chromosome 1 bearing two linked insertions of homogeneously staining regions (HSRs) in the house mouse (Mus musculus musculus) reveals an inverted pattern of the euchromatic region between the HSRs. On the basis of this analysis, a hypothesis on the causes for appearance of the aberrant chromosome was put forward: the double insertion is a result of inversion of the chromosome 1 of Mus musculus domesticus bearing a single long insertion. The proximal breakpoint is localized inside the HSR and the distal one--between subbands E3 and E4. From the point of view of these data, new symbols for the aberrations are proposed: Ls (HSR, 1C5) 1Icg--for the proximal insertion, Is(HSR, 1D)21cg--for the distal one, In (1) 1Icg--for the inverted region, including the bands D, E1-E3 and the insertion Is(HSR 1D)21cg.  相似文献   

3.
4.
A cloned DNA sequence that is specific for a germ line homogeneously staining region (HSR) on chromosome 1 of the mouse was found to be homologous to a single copy sequence in non-HSR mice. By in situ hybridization, the sequence in non-HSR mice was localized to approximately the same site as the insertion site of the HSR on chromosome 1 of HSR mice, indicating in situ amplification of the HSR.  相似文献   

5.
Chromosome sets of 114 Apodemus agrarius mice from 29 localities in Moldova, Ukraine, Siberia, and Far East were studied by means of G-, C-, and NOR-banding. In all populations studied, the Y chromosome was shown to be a medium-size acrocentric chromosome consisting of heterochromatin. Chromosome polymorphism observed in populations from Primorskii krai concerned (1) the morphology of the first two autosome pairs (variants A/A, A/ST, and ST/ST), (2) the number of metacentric chromosomes (from 6 to 8), and (3) heterochromatin localization in the pericentromeric regions of two metacentric chromosome pairs. A karyotype with an additional heterochromatic microchromosome found in all the metaphases studied was described in one mouse from a locality of western Primorye that has not been studied previously. In the karyotype of 15 mice from four populations of Primorye, the pool of nucleolus organizer regions is distributed over three autosome pairs rather than over four, as is the case A. agrarius from Europe. Based on the analysis of literature sources and our own data, the problem of chromosome polymorphism in the field mouse is discussed.  相似文献   

6.
Cytogenetic and allozyme differentiation of house mice Mus musculus L. was studied in 21 samples of Primorskii krai (region) from 1984 to 1998. The use of Q-H- and C-banding made it possible to reveal a high variation in the content and distribution of pericentromeric heterochromatin and high frequencies of marker autosomes 5, 7, 10, 12, 15, and 17-19 in the karyotypes of mice from some samples. The presence of marker alleles that are typical of the subspecies groups castaneus and musculus was shown for protein loci Idh, Sod-1, Aat-1, and Hbb. The data obtained indicate that the fauna of house mice of Primorye is characterized by subspecific mosaicism and hybrid origin. Apparently, subspecies M. m. castaneus, M. musculus ssp., M. M. homourus, and M. m. gansuensis contributed, to different degrees, to the formation of this fauna.  相似文献   

7.
An examination of the meiotic pattern of chromosome 1 isolated from a feral mouse population and containing a double insertion (Is) of homogeneously staining regions (HSRs) was carried out. The region delineated by the proximal breakpoint of Is(HSR;1C5) 1Icg and the distal breakpoint of Is(HSR;1E3)2Icg is desynapsed during the early pachytene stage and heterosynapsed at the midpachytene, as shown by electron microscopic analysis of synaptonemal complexes. The HSRs have no effect on the segregation of chromosome 1 in heterozygous mice. The lack of homosynapsis in the region under study causes chiasmata redistribution in heteromorphic bivalents. In normal males, single chiasmata are located in the medial part of the chromosome. In heterozygotes, this segment is heterosynapsed and unavailable for recombination. This leads to a significant decrease in the frequency of bivalents bearing single chiasmata. The total number of chiasmata per bivalent is much higher in heterozygous males than in normal ones. The recombination frequency between proximal markers fz and In also is higher in heterozygous animals. The increase in the total chiasma number in the heteromorphic bivalent is due to the addition of double chiasmata located mostly at precentromeric and pretelomeric regions of the chromosome.  相似文献   

8.
Sabine Adolph 《Chromosoma》1988,96(2):102-106
In situ nick translation of mouse metaphase chromosomes by non-radioactive detection means and DNase I digestion followed by Giemsa staining were used to analyse the DNase I resistance of two different C-band positive regions. These were the centromeric heterochromatin of aero- and metacentric chromosomes and an interstitial C- band on chromosome 1 of wild mice, IS(HSR;1C5D)1Lub. Whereas the centromeric heterochromatin was clearly resistant to DNase I, the interstitial C-band showed very high DNase I sensitivity. Among centromeric C-bands, the heterochromatin in Robertsonian fusion biarmed chromosomes was more resistant to DNase I action than was the centromeric heterochromatin of the acrocentric chromosomes.  相似文献   

9.
We examined the karyotypes of 212 specimens of the house mouse obtained from 44 localities in central and eastern Europe, and several regions of Asia. The Robertsonian chromosome fusion 5.12 was found in a population of Mus musculus musculus in Czechoslovakia. Two large HSRs on chromosome 1 were ascertained in four female mice from western Siberia. In most of the localities under study, the mice possessed a normal karyotype with 40 acrocentric chromosomes.  相似文献   

10.
Chromosomes with homogeneously staining regions (HSR) were analysed in a subclone of the H4 rat hepatoma cell line, where they represent amplification of the ribosomal RNA (rRNA) genes. Detailed G-band analysis of the subclone revealed that an HSR on the short arm of chromosome 3 became unstable and changed its position within the chromosome. The evolution of this marker chromosome was associated with the terminal deletion of the normal long arm of the HSR-bearing chromosome 3 and may have involved ring formation as a result of fusion between the HSR on the short arm and the broken end of the long arm. Evidence was obtained for breakage at different sites within the ring, producing chromosomes with HSRs located terminally on either the long arms or both arms. The terminally located HSR underwent elongation in some cells presumably as a result of a breakage-fusion-bridge cycle characteristic of instability due to telomeric loss. It is suggested that terminally located HSRs may generally occur this way.  相似文献   

11.
HSRs (homogeneously staining regions) are the cytological correlates of DNA amplification. In the house mouse, Mus musculus, many populations are polymorphic for the presence or absence of HSRs on chromosome 1. In the semispecies M. m. domesticus the amplified DNA is present within one HSR, whereas in M. m. musculus chromosomes 1 with two HSRs are found. Hybridization of HSR-specific probes to Southern blots of HSR-carrying genomic DNAs from different localities and semispecies revealed similar complex band patterns. the remaining variation is restricted to sequences with a low degree of amplification. Variation is higher between semispecies than within one semispecies. It is assumed that HSRs are derived from one original amplification event and that unequal recombination is the mechanism underlying the length variation of HSRs present today in both semispecies. Evidence from G-banding and in situ hybridization shows that the two HSRs of M. m. musculus originated from a single HSR by means of a paracentric inversion, where one break-point was located within the single HSR and the second outside the HSR. As a consequence of the paracentric inversion the two HSRs of M. m. musculus are permanently linked together. Since exchange of genes between the two semispecies is restricted to a narrow hybrid zone the amplification that gave rise to the HSR most probably occurred prior to the divergence into the semispecies M. m. domesticus and M. m. musculus about 1 million years ago.by D. Schweizer  相似文献   

12.
DNA amplification is associated with genomic instability, the main characteristic of cancer cells, and it frequently involves protooncogenes. Double minute chromosomes (DM) and homogeneously stained regions (HSR) are cytological manifestations of DNA amplification. Gain of chromosome 19 is a recurrent alteration in mouse hepatocellular carcinoma (HCC). In one tumor cell line established from HCC developed in myc transgenic mice, DM derived from chromosome 19 were identified by spectral karyotyping and confirmed by fluorescence in situ hybridization (FISH). A probe generated by PCR from microdissected DM was localized by FISH on normal and HCC-derived cell lines on DM and chromosome 19 at two sites separated by several medium size G-bands. This organization of DM containing amplified sequences from separate loci of the same chromosome, indicates a complex mechanism of DNA amplification, possibly involving more than one gene. DM or HSR were not previously identified in mouse HCC and adult human HCC. The recognition of these loci could lead to the cloning of new genes or identification of known genes important in development or progression of HCC.  相似文献   

13.
Examination of the meiotic pattern of chromosome 1 isolated from feral mouse population and containing a double insertion (Is) of homogeneously staining regions (HSRs) was carried out. In the previous study it has been shown that the region delineated by the proximal break point of Is(HSR; 1C5) 1Icg and the distal one of Is(HSR; 1E3) 2Icg is desynapsed during early pachytene and heterosynapsed at midpachytene. No synaptic disturbances were revealed in homozygotes in this study. Chiasma frequency in hetero- (1.87) and in homozygous (1.88) males was shown to be higher than in normal ones (1.61). Thus, insertion of recombinationally inert heterochromatic regions leads to increase in the length of genetic map of the chromosome via physical elongation and relaxation of interferential restrictions.  相似文献   

14.
Unusual chromosome architecture and behaviour at an HSR   总被引:2,自引:0,他引:2  
Sullivan BA  Bickmore WA 《Chromosoma》2000,109(3):181-189
Amplification of sequences within mammalian chromosomes is often accompanied by the formation of homogeneously staining regions (HSRs). The arrangement of DNA sequences within such amplicons has been investigated, but little is known about the chromosome structure or behaviour of these unusual regions. We have analysed the metaphase chromosome structure of the dihydrofolate reductase (DHFR) amplicon of CHOC400 cells. The chromatin in this region contains hyperacetylated nucleosomes yet, at the same time, appears to be densely packed like heterochromatin. The region does not bind heterochromatin proteins. We show that the dense packing of the region is restricted to DNA located close to the chromosome core/scaffold. In contrast, levels of the chromosome scaffold protein topoisomerase II at HSRs are the same as those found at other euchromatic locations. Metaphase chromosome condensation of the HSR is shown to be sensitive to topoisomerase II inhibitors, and sister chromatids often appear to remain attached within the HSRs at metaphase. We suggest that these features underlie anaphase bridging and the aberrant interphase structure of the HSR. The DHFR amplicon is widely used as a model system to study mammalian DNA replication. We conclude that the higher-order chromosome structure of this amplicon is unusual and suggest that caution needs to be exercised in extrapolating data from HSRs to normal chromosomal loci. Received: 19 October 1999; in revised form: 13 December 1999 / Accepted: 27 December 1999  相似文献   

15.
In wild mouse populations of Siberia, animals with a new variant of chromosome 1 were found. The total length of this chromosome was 1.3 times as great as the normal homologue. The G-banding technique revealed two additional insertions Is(HSR; 1C5)1Icg and Is(HSR; 1E3)2Icg located between bands 1C5 and 1D, and 1E3 and 1E4, resp. The C-banding of both the insertions was positive and lighter than that of the centromeric heterochromatin. The size of each insertion was approximately 15% of new variant of chromosome 1. No meiotic disturbances were found in heterozygous male mice. Chromosome 1 with insertions has been introduced into the laboratory mouse stock.  相似文献   

16.
An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from natural populations of Mus musculus. A meiotic drive favouring the aberrant chromosome was previously demonstrated for heterozygous females. The cause for this was the preferential passage of the chromosome 1 to the oocyte. Genetic analysis made it possible to identify a two-component system conditioning the deviation from equal segregation of the homologues. The system consists of the postulated distorter and a responder. The distorter is located on the chromosome 1 distally to the responder, between the 1n and Pep 3 genes, the former acting on the responder when in the trans position. Polymorphism of the distorters was manifested as variation in their effect on the meiotic drive level in the laboratory strain and mice from natural populations.  相似文献   

17.
Electron microscopic (EM) analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in chromosome 1 of the house mouse reveals that synapsis and synaptic adjustment are dependent on the size and location of the inversions and interaction between the latter. In(1)1Icg contains insertions of the inverted repeats Is(HSR;1C5)1Icg and Is(HSR;1D)2Icg and an inverted euchromatic region. Synaptic adjustment of the D-loops by shortening of the asynapsed segments of the lateral elements belonging to the insertions occurs at the late zytogene to early pachytene stage. Synaptic adjustment of the inversion loops takes place at early to late pachytene. A delay in adjustment was found in the double heterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. A correspondence between the lifespan of asynapsis in inverted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

18.
Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice—of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.  相似文献   

19.
The DNase I sensitivity of three different chromatin regions in mouse testicular cells was analysed by in situ nick translation with biotin-dUTP combined with various counterstaining techniques. The regions were: (i) the constitutive centromeric heterochromatin, (ii) an interstitial C-band positive insertion on chromosome 1, Is(HSR1;C5)1Lub, and (iii) the chromatin containing rDNA (designated nucleolar chromatin herein). Incorporated biotin was detected either by the horseradish peroxidase reaction with diaminobenzidine (DAB) or the alkaline phosphatase reaction with fast red. The latter resulted in a water insoluble red precipitate, which was easily removable by any organic solution thus allowing the application of various counterstaining protocols. DNase I sensitivity of the three chromatin regions was screened in different cell types of the mouse testis. The interstitial Is(HSR) region was highly DNase I sensitive when it was recognizable by strong mithramycin fluorescence. The centromeric heterochromatin was DNase I resistant when it was compacted into microscopically visible chromosomal structures (mitosis, pachytene, metaphase I and II). In interphase nuclei from Sertoli cells and spermatogonia it became highly DNase I sensitive. In round spermatids it displayed medium DNase I sensitivity. Nucleolar chromatin was not labelled by in situ nick translation when silver staining demonstrated strong protein production. Sperm cells were highly DNase I sensitive from stages 11 to 15, but resistant as mature spermatozoa.  相似文献   

20.
We have investigated the replication pattern of a large, homogenously staining chromosome region (HSR) in two antifolate-resistant Chinese hamster cell lines. This region is believed to be the location of an amplified genetic sequence which includes at least the gene coding for dihydrofolate reductase and which may be present in as many as 200 copies. It is shown that the HSR in both cell lines is among the first chromosome regions to begin DNA synthesis after reversal of an early G1 block. In cells synchronized in the S period with hydroxyurea, it is also clear that the HSR in both cell lines begins replication at many sites within its length in early S. The replicons comprising the HSR therefore may respond to a common initiation signal in early S. In one cell line (A3), replication of the HSR requires, at most, 3 hours of a 7-hour S period; in a second line (MQ19), replication proceeds for approximately 5 hours. In neither line does replication of the HSR occur concomitantly with synthesis of characteristic late replicating regions. These results were confirmed in exponential cultures using a retroactive labeling technique. The significance of these findings is discussed with reference to the possible origin and arrangement of the amplified sequence in these two cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号