共查询到20条相似文献,搜索用时 15 毫秒
1.
Bakshi R Prakash T Dash D Brahmachari V 《Biochemical and biophysical research communications》2004,320(1):197-204
Proteins belonging to SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. The yeast Ino80, the catalytic ATPase subunit of the INO80 complex, is the most recently described member of the SNF2 family. Outside the conserved ATPase domain, it has very little similarity with other well-characterized SNF2 proteins hence it is believed to represent a new subfamily. We have identified new members of this subfamily in different organisms and have detected characteristic features of this subfamily. Using various data mining tools we have identified a new, previously undetected domain in all members of this subfamily. This domain designated DBINO is characteristic of the INO80 subfamily and is predicted to have DNA-binding function. The presence of this domain in all the INO80 subfamily proteins from different organisms suggests its conserved function in evolution. 相似文献
2.
3.
4.
5.
Craig MacKay 《Biochemical and biophysical research communications》2009,390(2):187-15840
HLTF is highly similar in domain organisation to yeast Rad5. We identify PTIP and RPA70, both involved in DNA replication and DNA repair, as HLTF-interacting proteins although cells depleted of HLTF did not show defects in cellular responses to DNA damage. In vitro, HLTF has ATPase activity and E3 ubiquitin ligase activity with a range of E2 ubiquitin conjugating enzymes. HLTF expression is severely reduced in a range of cancer cells, and we suggest that the HLTF antibodies generated in this study could be used for cancer diagnostic purposes. 相似文献
6.
Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes. 相似文献
7.
ATP-dependent chromatin remodeling factors have been implicated in nuclear processes involving DNA. Here we report partial purification and characterization of an ATP-dependent chromatin remodeling activity from chicken liver. Nuclear extract from chicken liver was fractionated chromatographically to enrich proteins immunoreacting to antibodies against components of human SWI/SNF, namely BRG1, BAF170, BAF155, and BAF57. Immunoreactivity to these antibodies elutes with a mass of about 2MDa on Sepharose CL-6B gel filtration, suggesting that they constitute a SWI/SNF-like complex (SLC). The SLC displays three chromatin-remodeling activities, viz. nucleosome disruption, octamer transfer, and nucleosome sliding (octamer transfer in cis). We further show that components of SLC, as revealed by immunoreactivity to the above antibodies, display a dynamic nucleocytoplasmic distribution and colocalize with RNA polymerase II in the liver nuclei. This report contributes to the understanding of phylogenetic generality of chromatin remodeling factors in eukaryotes. 相似文献
8.
Heterozygous germline mutations in components of switch/sucrose nonfermenting (SWI/SNF) chromatin remodeling complexes were recently identified in patients with non-syndromic intellectual disability, Coffin-Siris syndrome and Nicolaides-Baraitser syndrome. The common denominator of the phenotype of these patients is severe intellectual disability and speech delay. Somatic and germline mutations in SWI/SNF components were previously implicated in tumor development. This raises the question whether patients with intellectual disability caused by SWI/SNF mutations in the germline are exposed to an increased risk of developing cancer. Here we compare the mutational spectrum of SWI/SNF components in intellectual disability syndromes and cancer, and discuss the implications of the results of this comparison for the patients. 相似文献
9.
The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease.To realize the full potential of CPCs for therapeutic purposes,it is essenti... 相似文献
10.
Dissecting the molecular mechanisms that guide the proper development of epicardial cell lineages is critical for understanding the etiology of both congenital and adult forms of human cardiovascular disease. In this study, we describe the function of BAF180, a polybromo protein in ATP-dependent SWI/SNF chromatin remodeling complexes, in coronary development. Ablation of BAF180 leads to impaired epithelial-to-mesenchymal-transition (EMT) and arrested maturation of epicardium around E11.5. Three-dimensional collagen gel assays revealed that the BAF180 mutant epicardial cells indeed possess significantly compromised migrating and EMT potentials. Consequently, the mutant hearts form abnormal surface nodules and fail to develop the fine and continuous plexus of coronary vessels that cover the entire ventricle around E14. PECAM and α-SMA staining assays indicate that these nodules are defective structures resulting from the failure of endothelial and smooth muscle cells within them to form coronary vessels. PECAM staining also reveal that there are very few coronary vessels inside the myocardium of mutant hearts. Consistent with this, quantitative RT-PCR analysis indicate that the expression of genes involved in FGF, TGF, and VEGF pathways essential for coronary development are down-regulated in mutant hearts. Together, these data reveal for the first time that BAF180 is critical for coronary vessel formation. 相似文献
11.
12.
13.
14.
Unfolding of the gene expression program that converts precursor cells to their terminally differentiated counterparts is critically dependent on the nucleosome-remodeling activity of the mammalian SWI/SNF complex. The complex can be powered by either of two alternative ATPases, BRM or BRG1. BRG1 is critical for development and the activation of tissue specific genes and is found in two major stable configurations. The complex of BRG1-associated factors termed BAF is the originally characterized form of mammalian SWI/SNF. A more recently recognized configuration shares many of the same subunits but is termed PBAF in recognition of a unique subunit, the polybromo protein (PBRM1). Two other unique subunits, BRD7 and ARID2, are also diagnostic of PBAF. PBAF plays an essential role in development, apparent from the embryonic lethality of Pbmr1-null mice, but very little is known about the role of PBAF, or its signature subunits, in tissue-specific gene expression in individual differentiation programs. Osteoblast differentiation is an attractive model for tissue-specific gene expression because the process is highly regulated and remains tightly synchronized over a period of several weeks. This model was used here, with a stable shRNA-mediated depletion approach, to examine the role of the signature PBAF subunit, ARID2, during differentiation. This analysis identifies a critical role for ARID2-containing complexes in promoting osteoblast differentiation and supports a view that the PBAF subset of SWI/SNF contributes importantly to maintaining cellular identity and activating tissue-specific gene expression. 相似文献
15.
16.
17.
18.
The Brahma (Brm) complex of Drosophila melanogaster is a SWI/SNF-related chromatin remodeling complex required to correctly maintain proper states of gene expression through ATP-dependent effects on chromatin structure. The SWI/SNF complexes are comprised of 8-11 stable components, even though the SWI2/SNF2 (BRM, BRG1, hBRM) ATPase subunit alone is partially sufficient to carry out chromatin remodeling in vitro. The remaining subunits are required for stable complex assembly and/or proper promoter targeting in vivo. Our data reveals that SNR1 (SNF5-Related-1), a highly conserved subunit of the Brm complex, is required to restrict complex activity during the development of wing vein and intervein cells, illustrating a functional requirement for SNR1 in modifying whole complex activation functions. Specifically, we found that snr1 and brm exhibited opposite mutant phenotypes in the wing and differential misregulation of genes required for vein and intervein cell development, including rhomboid, decapentaplegic, thick veins, and blistered, suggesting possible regulatory targets for the Brm complex in vivo. Our genetic results suggest a novel mechanism for SWI/SNF-mediated gene repression that relies on the function of a 'core' subunit to block or shield BRM (SWI2/SNF2) activity in specific cells. The SNR1-mediated repression is dependent on cooperation with histone deacetylases (HDAC) and physical associations with NET, a localized vein repressor. 相似文献
19.
ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation. 相似文献
20.
Although recent studies highlight the importance of histone modifications and ATP‐dependent chromatin remodelling in DNA double‐strand break (DSB) repair, how these mechanisms cooperate has remained largely unexplored. Here, we show that the SWI/SNF chromatin remodelling complex, earlier known to facilitate the phosphorylation of histone H2AX at Ser‐139 (S139ph) after DNA damage, binds to γ‐H2AX (the phosphorylated form of H2AX)‐containing nucleosomes in S139ph‐dependent manner. Unexpectedly, BRG1, the catalytic subunit of SWI/SNF, binds to γ‐H2AX nucleosomes by interacting with acetylated H3, not with S139ph itself, through its bromodomain. Blocking the BRG1 interaction with γ‐H2AX nucleosomes either by deletion or overexpression of the BRG1 bromodomain leads to defect of S139ph and DSB repair. H3 acetylation is required for the binding of BRG1 to γ‐H2AX nucleosomes. S139ph stimulates the H3 acetylation on γ‐H2AX nucleosomes, and the histone acetyltransferase Gcn5 is responsible for this novel crosstalk. The H3 acetylation on γ‐H2AX nucleosomes is induced by DNA damage. These results collectively suggest that SWI/SNF, γ‐H2AX and H3 acetylation cooperatively act in a feedback activation loop to facilitate DSB repair. 相似文献