首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An extramitochondrial acetyl-coenzyme-A hydrolase from rat liver is shown to be a cold-labile oligomeric enzyme that undergoes a reversible conformational transition between a dimeric and a tetrameric form in the presence of adenosine 5'-triphosphate or adenosine 5'-diphosphate at 25-37 degrees C, and between a dimeric and a monomeric form at low temperature. The enzymatically active dimer is fairly stable at 25-37 degrees C, but much less stable at low temperature, dissociating into monomer with no activity. At 37 degrees C and low concentrations of enzyme protein (less than or equal to 14 micrograms/ml), the activity decreased rapidly and only 10% of the initial activity remaining after 60 min. Addition of bovine serum albumin or immunoglobulin G to the medium completely prevented inactivation of the dimeric enzyme at low concentration at 37 degrees C, but had little effect on cold inactivation of the enzyme. Cold inactivation of the dimeric enzyme was partially prevented by the presence of various CoA derivatives. The order of potency was acetyl-CoA (substrate) greater than or equal to butyryl-CoA greater than octanoyl-CoA greater than CoA (product) greater than acetoacetyl-CoA. Another enzyme product, acetate, had little effect on cold inactivation. Polyols, such as sucrose, glycerol, and ethylene glycol, and high concentrations of NaCl, KCl, pyrophosphate and phosphate also greatly prevented cold inactivation. Cold inactivation was scarcely affected by pH within the pH range at which the enzyme was stable at 37 degrees C.  相似文献   

2.
Adenosine-5'-phosphosulfate (APS) kinase from Penicillium chrysogenum, loses catalytic activity at temperatures greater than approximately 40 degrees C. When the heat-inactivated enzyme is cooled to 30 degrees C or lower, activity is regained in a time-dependent process. At an intermediary temperature (e.g. 36 degrees C) an equilibrium between active and inactive forms can be demonstrated. APS kinase from P. chrysogenum is a dimer (Mr = 57,000-60,000) composed of two apparently identical subunits. Three lines of evidence suggest that the reversible inactivation is a result of subunit dissociation and reassociation. (a) Inactivation is a first-order process. The half-time for inactivation at a given temperature is independent of the original enzyme concentration. Reactivation follows second-order kinetics. The half-time for reactivation is inversely proportional to the original enzyme concentration. (b) The equilibrium active/inactive ratio at 36 degrees C increases as the total initial enzyme concentration is increased. However, Keq,app at 5 mM MgATP and 36 degrees C calculated as [inactive sites]2/0.5 [active sites] is near-constant at about 1.7 X 10(-8) M over a 10-fold concentration range of enzyme. (c) At 46 degrees C, the inactive P. chrysogenum enzyme (assayed after reactivation) elutes from a calibrated gel filtration column at a position corresponding to Mr = 33,000. Substrates and products of the APS kinase reaction had no detectable effect on the rate of inactivation. However, MgATP and MgADP markedly stimulated the reactivation process (kapp = 3 X 10(5) M-1 X s-1 at 30 degrees C and 10 mM MgATP). The kapp for reactivation was a nearly linear function of MgATP up to about 20 mM suggesting that the monomer has a very low affinity for the nucleotide compared to that of the native dimer. Keq,app at 36 degrees C increases as the MgATP concentration is increased. The inactivation rate constant increased as the pH was decreased but no pK alpha could be determined. The reactivation rate constant increased as the pH was increased. An apparent pK alpha of 6.4 was estimated.  相似文献   

3.
To establish if the predominant form of acetylcholinesterase in muscle microsomes (4.8S) corresponded to the monomeric or dimeric form of the enzyme we studied the sensitivity to heating of Triton X-100 solubilized extract and that of 4.8S, 10-11S and 13.5S species of the enzyme. Inactivation of soluble acetylcholinesterase began at 45-47 degrees C and was almost complete at 60 degrees C. Sedimentation analysis revealed that the partial loss of activity was due to inactivation of the 4.8S form, although by heating the 13.5S was converted into the 10S enzyme. Inactivation of the 4.8S form began at 45 degrees C, whereas the larger forms required higher temperature. The 4.8S component follows a time course of inactivation which could be fitted by a double exponential equation (when heated at 52 degrees C, almost 83% of the activity showed a short half-life). The 10-11S species was also inactivated following a two step process while the 13.5S enzyme was fairly stable at 52 degrees C. The results show that the lightest component behaves as a monomeric form of acetylcholinesterase.  相似文献   

4.
Arylsulfatase B, purified to homogeneity from human eosinophils, is a tetrameric enzyme whose activity varied in accordance with the state of association of its monomeric subunits. The rate of dissociation of oligomeric forms was slow relative to the rate of the enzymatic reaction so that the kinetic properties of the enzyme depended on the concentration of the enzyme before assay. For concentrated enzyme solutions (14 micrograms/ml), Lineweaver-Burk analysis demonstrated substrate inhibition at greater than or equal to 20 mM substrate and revealed two distinct regions of activity at low and intermediate substrate concentrations. The addition of bovine serum albumin (60 micrograms/ml) or sucrose (0.25 M), which prevent subunit dissociation, yielded a linear relationship on Lineweaver-Burk analysis at non-inhibitory substrate concentrations. For dilute enzyme concentrations (4.7 micrograms/ml), inhibition occurred at greater than or equal to 2 mM substrate. Nanomolar amounts of leukotriene C4 (LTC4), relative to millimolar concentrations of substrate, inhibited eosinophil arylsulfatase B. On Lineweaver-Burk analysis, the pattern of inhibition of LTC4 with concentrated enzyme was compatible with competitive inhibition of only one oligomeric form of the enzyme, whereas at low enzyme concentrations the pattern of inhibition was apparently competitive. These findings suggest that LTC4 is a potent competitive inhibitor of a dissociated, possibly dimeric, form of the enzyme. Nanomolar concentrations of LTC4, leukotriene D4, and leukotriene E4 were equally inhibitory, whereas leukotriene B4 and isomeric 5,12-dihydroxyeicosatetraenoic acids had no inhibitory activity, indicating a requirement for a thiopeptide at C-6. Thiopeptide leukotriene analogs without an intact triene structure also lacked inhibitory activity. Sulfoxide analogs of LTC4 and leukotriene D4 were potent inhibitors, although two sulfone analogs of leukotriene D4 were not inhibitory. Arylsulfatase B did not inactivate the spasmogenic activity of sulfidopeptide leukotrienes. These findings indicate that sulfidopeptide leukotrienes and their sulfoxide derivatives may regulate by competitive inhibition the activity of oligomeric forms of the eosinophil lysosomal hydrolase, arylsulfatase B.  相似文献   

5.
The bifunctional enzyme aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is responsible for catalysis of the last two steps in the de novo purine pathway. Gel filtration studies performed on human enzyme suggested that this enzyme is monomeric in solution. However, cross-linking studies performed on both yeast and avian ATIC indicated that this enzyme might be dimeric. To determine the oligomeric state of this protein in solution, we carried out sedimentation equilibrium analysis of ATIC over a broad concentration range. We find that ATIC participates in a monomer/dimer equilibrium with a dissociation constant of 240 +/- 50 nM at 4 degrees C. To determine whether the presence of substrates affects the monomer/dimer equilibrium, further ultracentrifugation studies were performed. These showed that the equilibrium is only significantly shifted in the presence of both AICAR and a folate analog, resulting in a 10-fold reduction in the dissociation constant. The enzyme concentration dependence on each of the catalytic activities was studied in steady state kinetic experiments. These indicated that the transformylase activity requires dimerization whereas the cyclohydrolase activity only slightly prefers the dimeric form over the monomeric form.  相似文献   

6.
The irreversible thermal inactivation of the sugarcane leaf NADP(+)-malic enzyme was studied at 50 degrees C and pH 7.0 and 8.0. Depending on the preincubation conditions, thermal inactivation followed mono- or biphasic first-order kinetics. A two-step behavior in the irreversible denaturation process was found when protein concentration was sufficiently low. The protein concentration necessary to obtain monlphasic thermal inactivation kinetics was lower at pH 8.0 than at pH 7.0. The results suggest that biphasic inactivation kinetics are the consequence of the existence of two different oligomeric forms of the enzyme (dimer and tetramer), with the dimer being more stable in regards to thermal inactivation. The effects of the substrate and essential cofactors on the thermostability and equilibrium between the dimeric and tetrameric enzyme forms were also studied. Depending on the pH, NADP+, L-malate, and Mg2+ all had a protective effect on the stability of the dimeric and tetrameric species during thermal treatment. However, these ligands showed different effects on the aggregation state of the enzyme. NADP+ and L-malate induced dissociation, especially at pH 8.0, whereas Mg2+ induced aggregation of the protein. By studying the thermal inactivation kinetics at 50 degrees C and different pH values it was observed that the equilibrium between dimers and tetramers was dramatically affected in the range of pH 7.0-8.0. These results suggest that an amino acid residue(s) in the protein with an apparent pKa value of 7.7 needs to be deprotonated to stabilize aggregation of the enzyme to the tetrameric form.  相似文献   

7.
R Hermann  R Jaenicke  N C Price 《Biochemistry》1985,24(8):1817-1821
The reconstitution of the tetrameric phosphoglycerate mutase from bakers' yeast after denaturation in guanidine hydrochloride has been studied. When assays are performed in the presence of trypsin, it is found that reactivation parallels the regain of tetrameric structure. However, in the absence of trypsin, the regain of activity is more rapid, suggesting that monomeric and dimeric intermediates possess partial activity (35% of the value of native enzyme) which is sensitive to trypsin. When reconstitution is studied in the presence of substrates, it is again found that monomeric and dimeric intermediates possess 35% activity. Under these latter conditions, the activity of the monomer but not of the dimer is sensitive to trypsin.  相似文献   

8.
P Pasta  G Mazzola  G Carrea 《Biochemistry》1987,26(5):1247-1251
Diethyl pyrocarbonate inactivated the tetrameric 3 alpha,20 beta-hydroxysteroid dehydrogenase with second-order rate constants of 1.63 M-1 s-1 at pH 6 and 25 degrees C or 190 M-1 s-1 at pH 9.4 and 25 degrees C. The activity was slowly and partially restored by incubation with hydroxylamine (81% reactivation after 28 h with 0.1 M hydroxylamine, pH 9, 25 degrees C). NADH protected the enzyme against inactivation with a Kd (10 microM) very close to the Km (7 microM) for the coenzyme. The ultraviolet difference spectrum of inactivated vs. native enzyme indicated that a single histidyl residue per enzyme subunit was modified by diethyl pyrocarbonate, with a second-order rate constant of 1.8 M-1 s-1 at pH 6 and 25 degrees C. The histidyl residue, however, was not essential for activity because in the presence of NADH it was modified without enzyme inactivation and modification of inactivated enzyme was rapidly reversed by hydroxylamine without concomitant reactivation. Progesterone, in the presence of NAD+, protected the histidyl residue against modification, and this suggests that the residue is located in or near the steroid binding site of the enzyme. Diethyl pyrocarbonate also modified, with unusually high reaction rate, one lysyl residue per enzyme subunit, as demonstrated by dinitrophenylation experiments carried out on the treated enzyme. The correlation between inactivation and modification of lysyl residues at different pHs and the protection by NADH against both inactivation and modification of lysyl residues indicate that this residue is essential for activity and is located in or near the NADH binding site of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Partial reactivation of inactivated pantothenase (pantothenate amidohydrolase, EC 3.5.1.22) from Pseudomonas fluorescens was studied. After partial inactivation during storing, pantothenase activity is increased by 10-40% when incubated with, for instance, oxalate, oxaloacetate or pyruvate. Reactivation proceedes slowly; with oxaloacetate the stable level of enzyme activity is attained in 20-30 min. The same compounds also cause reactivation of thermally inactivated pantothenase when partial inactivation has occurred at 28-37 degrees C. The amount of the reactivating enzyme form is relatively greater the lower the temperature during inactivation, but it never exceeds 20% of the original amount of active enzyme. Also another, unstable form of pantothenase is formed in thermal inactivation. This form becomes inactivated in a few minutes after the heat treatment, at pH 6-8 and at temperatures between 0 and 10 degrees C. Reactivation causes special problems in enzyme kinetic measurements; for instance, curvature is found in the lines of Ki determination by the Dixon plot.  相似文献   

10.
The specific activity of chicken liver pyruvate carboxylase has been shown to decrease with decreasing enzyme concentration, even at 100 microM, which is close to the estimated physiological concentration. The kinetics of the loss of enzyme specific activity following dilution were biphasic. Incubation of dilution-inactivated enzyme with ATP, acetyl CoA, Mg2+ + ATP or, to a lesser degree, with Mg2+ alone resulted in a high degree of reactivation, while no reactivation occurred in the presence of pyruvate. The association state of the enzyme before, during, and after dilution inactivation has been assessed by gel filtration chromatography. These studies indicate that on dilution, there is dissociation of the catalytically active tetrameric enzyme species into inactive dimers. Reactivation of the enzyme resulted in reassociation of enzymic dimers into tetramers. The enzyme was shown to form high molecular weight aggregates at high enzyme concentrations.  相似文献   

11.
The temperature adaptation of pyrrolidone carboxyl peptidase (PCP) from a hyperthermophile, Pyrococcus furiosus (Pf PCP), was characterized in the context of an assembly form of the protein which is a homotetramer at neutral pH. The Pf PCP exhibited maximal catalytic activity at 90-95 degrees C and its activity was higher in the temperature range 30-100 degrees C than its counterpart from the mesophilic Bacillus amyloliquefaciens (BaPCP). Thermal stability was monitored by differential scanning calorimetry (DSC). Two clearly separated peaks appeared on the DSC curves for Pf PCP at alkaline and acidic pH. Using the oxidized Pf PCP and two mutant proteins (Pf C188S and Pf C142/188S), it was found that the peaks on the high and low temperature sides of the DSC curve of Pf PCP were produced by the forms with an intersubunit disulfide bridge between the two subunits and without the bridge, respectively, indicating the stabilization effect of intersubunit disulfide bridges. The denaturation temperature (Td) of Pf PCP with intersubunit disulfide bridges was higher by 53 degrees C at pH 9.0 than that of BaPCP. An analysis of the equilibrium ultracentrifugation patterns showed that the tetrameric Pf C142/188S dissociated into dimers with decreasing pH in the acidic region and became monomer subunits at pH 2.5. The heat denaturation of Pf PCP and its two Cys mutants was highly reversible in the dimeric forms, but completely irreversible in the tetrameric form. The Td of Pf C142/188S decreased as the enzyme became dissociated, but the monomeric form of the protein was still folded at pH 2.5, although BaPCP was completely denatured at acidic pH. These results indicate that subunit interaction plays an important role in stabilizing PCP from P. furiosus in addition to the intrinsic enhanced stability of its monomer.  相似文献   

12.
Pro-tRNA synthetase from D. regia and P. aureus lost enzymic activity more rapidly at 0° than at room temperature. The enzyme from a number of higher plants that produce azetidine-2-carboxylic acid (A2C) was more rapidly inactivated in the cold than the enzyme from plants which do not contain A2C. The rate of cold inactivation was dependent on temperature and on the concentration of glycerol, protein and sulphydryl-reducing reagents. Substrates of Pro-tRNA synthetase also stabilized the enzyme against cold inactivation. Enzyme which had been completely inactivated by storage in the cold, could be reactivated by warming in the presence of a sulphydryl-reducing reagent. The rate of reactivation was dependent on temperature, pH and the concentration of sulphydryl-reducing reagent. Kinetic analysis indicated the existence of more than one molecular form of the enzyme. It is suggested that the cold-lability of Pro-tRNA synthetase may be due to dissociation of the active enzyme molecule into inactive subunits.  相似文献   

13.
Upon reaction with N-ethylmaleimide, tryptophanyl-tRNA synthetase from beef pancreas dissociates into subunits. At pH7, the rate of the dissociation is close to both the reaction rate of the buried--SH groups and the rate of inactivation (Iborra, F., Mourgeon, G., Labouesse B., and Labouesse, J. (1973) Eur. J. Biochem. 39, 547-556). The pH and enzyme concnetration dependences of the reaction rate of the 16 cysteinyl residues of the enzyme as well as that of its inactivation support the idea that inactivation by alkylation of the--SH groups is due essentially to the dissociation of the protein into inactive subunits and not to the chemical blocking of a catalytic residue. This is confirmed by the independence on N-ethylmaleimide concentration of the reaction of the buried--SH groups and of the inactivation of the enzyme at high N-ethylmaleimide concentration. The dissociation becomes in this case the rate-limiting step of the chemical reaction. The monomeric structure is stabilized by the blocking of the--SH groups exposed during the dissociation. The dissociation constant of the dimeric enzyme is progressively increased during the alkylation. The tightness of the associated structure depends on the protonation of groups titrating between pH 7 and pH 9.  相似文献   

14.
The effect of microwave (f = 10.4 GHz) irradiation on a thermostable enzyme was experimentally tested, showing that irreversible inactivation is obtained. Enzymatic solutions (500 microliters, with concentrations between 10-100 micrograms/ml) were exposed at 70 degrees C, at SAR levels of 1.1 and 1.7 W/g for 15, 30, 45, or 60 min, and their activity was compared to that of a sample heated in a water bath at the same temperature. The residual activity of the exposed samples depends on enzyme concentration, microwave power level, and exposure time; activity was reduced to 10% in 10 micrograms/ml solutions treated at 1.7 W/g for 60 min. Microwave effects disappeared at concentrations above 50 micrograms/ml. These results were not found following water bath heating at the same temperature and durations.  相似文献   

15.
UDP-galactose 4-epimerase from Escherichia coli is a homodimer of 39 kDa subunit with non-covalently bound NAD acting as cofactor. The enzyme can be reversibly reactivated after denaturation and dissociation using 8 M urea at pH 7.0. There is a strong affinity between the cofactor and the refolded molecule as no extraneous NAD is required for its reactivation. Results from equilibrium denaturation using parameters like catalytic activity, circular-dichroism, fluorescence emission (both intrinsic and with extraneous fluorophore 1-aniline 8-naphthalene sulphonic acid), 'reductive inhibition' (associated with orientation of NAD on the native enzyme surface), elution profile from size-exclusion HPLC and light scattering have been compiled here. These show that inactivation, integrity of secondary, tertiary and quaternary structures have different transition mid-points suggestive of non-cooperative transition. The unfolding process may be broadly resolved into three parts: an active dimeric holoenzyme with 50% of its original secondary structure at 2.5 M urea; an active monomeric holoenzyme at 3 M urea with only 40% of secondary structure and finally further denaturation by 6 M urea leads to an inactive equilibrium unfolded state with only 20% of residual secondary structure. Thermodynamical parameters associated with some transitions have been quantitated. The results have been discussed with the X-ray crystallographic structure of the enzyme.  相似文献   

16.
Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) of Escherichia coli, denatured in 4 M guanidine-HCl, was renatured in vitro by simple dilution with a concomitant restoration of the activity. While the native enzyme exhibited a marked negative Cotton effect centered at 233 +/- 1 nm in optical rotatory dispersion, the enzyme denatured in 4 M guanidine-HCl retained little optical activity. Upon dilution of the denatured enzyme, however, more than 90% of the ordered structure was recovered in 1 min, while the restoration of the activity proceeded much more slowly. Estimation of molecular weights by gel permeation chromatography indicated that the tetrameric enzyme is subject to reversible dissociation into monomeric subunits under the experimental conditions. Various environmental factors such as temperature, pH and protein concentration exhibited profound influence on the rate and extent of the reactivation. In order to examine the correlation between the restoration of the activity and the quaternary structure, electron microscopic inspection of the kinetic processes of reversible denaturation was attempted. Upon dilution of the denatured enzyme at 4 degrees C, neither the activity nor tetrameric images were detected over several min. Upon the temperature shift up to 25 degrees C, however, the activity regain was rapidly proceeded concomitant with the appearance of tetrameric molecules. These results are compatible with the possibility that the subunit assembly is an essential prerequisite, thought not sufficient, for enzyme activity.  相似文献   

17.
The anthranilate phosphoribosyltransferase from Sulfolobus solfataricus (ssAnPRT) forms a homodimer with a hydrophobic subunit interface. To elucidate the role of oligomerisation for catalytic activity and thermal stability of the enzyme, we loosened the dimer by replacing two apolar interface residues with negatively charged residues (mutations I36E and M47D). The purified double mutant I36E+M47D formed a monomer with wild-type catalytic activity but reduced thermal stability. The single mutants I36E and M47D were present in a monomer-dimer equilibrium with dissociation constants of about 1 μM and 20 μM, respectively, which were calculated from the concentration-dependence of their heat inactivation kinetics. The monomeric form of M47D, which is populated at low subunit concentrations, was as thermolabile as monomeric I36E+M47D. Likewise, the dimeric form of I36E, which was populated at high subunit concentrations, was as thermostable as dimeric wild-type ssAnPRT. These findings show that the increased stability of wild-type ssAnPRT compared to the I36E+M47D double mutant is not caused by the amino acid exchanges per se but by the higher intrinsic stability of the dimer compared to the monomer. In accordance with the negligible effect of the mutations on catalytic activity and stability, the X-ray structure of M47D contains only minor local perturbations at the dimer interface. We conclude that the monomeric double mutant resembles the individual wild-type subunits, and that ssAnPRT is a dimer for stability but not for activity reasons.  相似文献   

18.
A 33,000 g supernatant from human platelets showed a biphasic heat inactivation curve at 45, 50 and 55 degrees C of the cAMP and cGMP phosphodiesterase. This could suggest the presence of two differently heat sensitive phosphodiesterases. However, a preparation heated for 30 min at 55 degrees C, where only the apparently thermostable form of the enzyme remained, still displayed the same characteristics as the starting material, i.e. two apparent Km values for cAMP, a cAMP specific activity lower at low protein concentration (less than 50 micrograms/ml) than at high protein concentration(greater than 100 micrograms/ml), and three peaks of activity upon linear sucrose density gradient. Moreover, a biphasic inactivation curve was again observed after a second heat treatment. These results demonstrated that the heat effect is not a simple protein denaturation of one of two independent species. A study at different temperatures of the profile of the cAMP phosphodiesterase upon sucrose gradient demonstrated that the dissociated form was predominant at high temperature whereas lower temperature favored the associated form. During heat treatment, the dissociated form is at first denatured and this leads to a shift in the equilibrium between the associated and dissociated forms of the phosphodiesterase in favor of the dissociated form. From the overall results, one can draw a model for phosphodiesterase regulation by dissociation-reassociation.  相似文献   

19.
Glutathione reductase from Escherichia coli is inactivated when incubated with either NADPH or NADH. The process is inversely dependent on the enzyme concentration. Inactivation is rapid and monophasic with 1 microM NADPH and 1 nM enzyme FAD giving a t1/2 of 1 min. Complex formation between NADPH and the two-electron reduced enzyme (EH2) at higher levels of NADPH protects against rapid inactivation. NADP+, produced in a side reaction with oxygen, also protects by forming a complex with EH2. These complexes make analysis of the concentration dependence of the inactivation process difficult. Inactivation with NADH, where complexes do not interfere, is slower but can be analyzed more readily. With 152 microM NADH and 5.4 nM enzyme FAD, the time required for 50% inactivation is 17 min. The process is markedly biphasic, reaching the final inactivation level after 5-7 h. Analysis of the relationship between the final level of inactivation with NADH and the enzyme concentration indicates that inactivation is due to dissociation of the normally dimeric enzyme. Thus, the position of the dimer-monomer equilibrium between an active dimeric two-electron reduced species and an inactive monomeric two-electron reduced form determines the enzyme activity. An apparent equilibrium constant (Kd) for dissociation of dimer obtained from the anaerobic concentration dependent inactivation curves is 220 nM. Enzyme inactivated with NADH can be reactivated with glutathione, and the reactivation kinetics are second order, monomer-monomer over 75% of the reaction with an average apparent association rate constant (ka) of 13.1 (+/- 5.5) X 10(6) M-1 min-1.  相似文献   

20.
Pyruvate oxidase, a tetrameric enzyme consisting of 4 identical subunits, dissociates into apoenzyme monomers and free FAD when treated with acid ammonium sulfate in the presence of high concentrations of potassium bromide. Reconstitution of the native enzymatically active protein can be accomplished by incubating equimolar concentrations of apomonomers and FAD at pH 6.5. The kinetics of the reconstitution reaction have been measured by 1) enzyme activity assays, 2) spectrophotometric assays to measure FAD binding, and 3) high performance liquid chromatography analysis measuring the distribution of monomeric, dimeric, and tetrameric species during reconstitution. The kinetic analysis indicates that the second order reaction of apomonomers with FAD to form an initial monomer-FAD complex is fast. The rate-limiting step for enzymatic reactivation appears to be the folding of the polypeptide chain in the monomer-FAD complex to reconstitute the three-dimensional FAD binding site prior to subunit reassociation. The subsequent formation of native tetramers appears to proceed via an essentially irreversible dimer assembly pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号