首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bird pollination systems of the New and Old Worlds evolved independently, and differ in many aspects. New World plants are often presented as those adapted to hovering birds while Old World plants to perching birds. Most Neotropical studies also demonstrate that in hummingbird species rich assemblages, only a small number of highly specialized birds exploits the most specialized plants with long corollas. Nevertheless, recent research on bird–plant pollination interactions suggest that sunbird pollination systems in the Old World have converged more with the highly specialized hummingbird pollination systems than previously thought. In this study we focus on the pollination systems of the bird pollination syndrome Impatiens species on Mt. Cameroon, West Africa. We show that despite the high diversity of sunbirds on Mt. Cameroon, only Cyanomitra oritis appear to be important pollinator of all Impatiens species. This asymmetry indicates the absence of pair wise co‐evolution and points to a diffuse co‐evolutionary process resulting in guilds of highly specialized plants and birds; a situation well known from hummingbirds and specialized plant communities of the New World. Additionally, the herbaceous habits of Impatiens species, the frequent adaptations to pollination by hovering birds, and the habitat preference for understory in tropical forests or epiphytic growth, resemble the highly specialized Neotropical plants. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 127–133.  相似文献   

2.
Abstract The pollination ecology of eight populations of the tree Embothrium coccineum was studied along a steep rainfall gradient in NW Patagonia, Argentina. The showy red flowers suggest an ornithophilous pollination syndrome and they have been reported to attract hummingbirds in Argentina and hummingbirds and passerines in Chile. At each population, flower visitors were recorded and floral rewards were analysed. We found a highly significant increase in nectar concentration towards the drier end of the gradient, but this change was not related to the turnover of species in the flower‐visitor assemblage of E. coccineum. In addition to the hummingbird Sephanoides sephaniodes (Green‐Backed Firecrown, Trochilidae) which is widespread throughout the temperate forest at this latitude, other species seem to be locally important as pollinators of E. coccineum in some sites in Argentina (e.g. two long‐tongued tanglewing flies (Nemestrinidae) of the genus Trichophthalma). The long‐dated occurrence of tanglewing flies in South America, relative to the more modern hummingbirds, suggests that ornithophily may be a derived character in E. coccineum, the ancestral condition being pollination by Nemestrinidae.  相似文献   

3.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

4.
To reveal the role of climate oscillations of the Quaternary in forming the contemporary plant diversity in the temperate Sino‐Japanese Floristic Region of mainland China, we assess the phylogeographical patterns of four Sagittaria species in the region using sequence data from plastid DNA non‐coding regions (psbA‐trnH, the rpl16 intron and trnC‐ycf6) and the internal transcribed spacers of nuclear ribosomal DNA (nrITS). Based on both datasets, the divergence time among the four studied species was estimated to fall in the Late Tertiary (plastid DNA: 7.1–13.7 Mya; ITS: 11.1–16.1 Mya). The ancestral distribution analyses revealed that regions with a great diversity in topography, climate and ecological conditions, e.g. the Hengduan Mountains, Central China and East China, were the areas where the endemics originated. Mismatch distribution analyses revealed that each species had experienced a range expansion in response to Quaternary climatic oscillations. Our findings contradict the hypothesis of Quaternary origins of the endemic Sagittaria spp.; we support the view that modern species in the Northern Hemisphere originated mostly during the Tertiary. Range expansion may have profoundly modified the current distribution ranges of Sagittaria species in the Sino‐Japanese Floristic Region. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 6–20.  相似文献   

5.
Mitchella is a small genus of the Rubiaceae with only two species. It is the only herbaceous semishrub of the family showing a disjunct distribution in eastern Asia and eastern North America, extending to Central America. Its phylogeny and biogeographical diversification remain poorly understood. In this study, we conducted phylogenetic and biogeographical analyses for Mitchella and its close relative Damnacanthus based on sequences of the nuclear internal transcribed spacer (ITS) and four plastid markers (rbcL, atpB‐rbcL, rps16 and trnL‐F). Mitchella is monophyletic, consisting of an eastern Asian M. undulata clade and a New World M. repens clade. Our results also support Michella as the closest relative to the eastern Asian Damnacanthus. The divergence time between the two intercontinental disjunct Mitchella species was dated to 7.73 Mya, with a 95% highest posterior density (HPD) of 3.14?12.53 Mya, using the Bayesian relaxed clock estimation. Ancestral area reconstructions suggest that the genus originated in eastern Asia. The semishrub Mitchella appears to have arisen from its woody ancestor in eastern Asia and then migrated to North America via the Bering land bridge in the late Miocene. © 2013 The Linnean Society of London  相似文献   

6.
Several hummingbird‐pollinated plant lineages have been demonstrated to show increased rates of diversification compared to related insect‐pollinated lineages. It has been argued that this pattern is produced by a higher degree of specialization on part of both hummingbirds and plants. We here test an alternative hypothesis: The often highly territorial hummingbirds may on average carry pollen over shorter distances than other pollinators and drive diversification by reducing gene flow distances. We present experimental data from pollen analogue tracking showing shorter dispersal distances in hummingbird‐pollinated than in bee‐pollinated species among ten Neotropical species of Justicia (Acanthaceae). Abstract in Spanish is available with online material.  相似文献   

7.
8.
North America and Eurasia share several closely related taxa that diverged either from the breakup of the Laurasian supercontinent or later closures of land bridges. Their modern population structures were shaped in Pleistocene glacial refugia and via later expansion patterns, which are continuing. The pikeperch genus Sander contains five species – two in North America (S. canadensis and S. vitreus) and three in Eurasia (S. lucioperca, S. marinus, and S. volgensis) – whose evolutionary relationships and relative genetic diversities were previously unresolved, despite their fishery importance. This is the first analysis to include the enigmatic and rare sea pikeperch S. marinus, nuclear DNA sequences, and multiple mitochondrial DNA regions. Bayesian and maximum‐likelihood trees from three mitochondrial and three nuclear gene regions support the hypothesis that Sander diverged from its sister group Romanichthys/Zingel ~24.6 Mya. North American and Eurasian Sander then differentiated ~20.8 Mya, with the former diverging ~15.4 Mya, congruent with North American fossils dating to ~16.3–13.6 Mya. Modern Eurasian species date to ~13.8 Mya, with S. volgensis being basal and comprising the sister group to S. lucioperca and S. marinus, which diverged ~9.1 Mya. Genetic diversities of the North American species are higher than those in Eurasia, suggesting fewer Pleistocene glaciation bottlenecks. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 156–179.  相似文献   

9.
The grasses (Poaceae) are the fifth most diverse family of angiosperms, including 800 genera and more than 10 000 species. Few phylogenetic studies have tried to investigate palaeo‐biogeographical and palaeo‐ecological scenarios that may have led to present‐day distribution and diversity of grasses at the family level. We produced a dated phylogenetic tree based on combined plastid DNA sequences and a comprehensive sample of Poaceae. Furthermore, we produced an additional tree using a supermatrix of morphological and molecular data that included all 800 grass genera so that ancestral biogeography and ecological habitats could be inferred. We used a likelihood‐based method, which allows the estimation of ancestral polymorphism in both biogeographical and ecological analyses for large data sets. The origin of Poaceae was retrieved as African and shade adapted. The crown node of the BEP + PACCMAD clade was dated at 57 Mya, in the early Eocene. Grasses dispersed to all continents by approximately 60 million years after their Gondwanan origin in the late Cretaceous. PACCMAD taxa adapted to open habitats as early as the late Eocene, a date consistent with recent phytolith fossil data for North America. C4 photosynthesis first originated in Africa, at least for Chloridoideae in the Eocene at c. 30 Mya. The BEP clade members adapted to open habitats later than PACCMAD members; this was inferred to occur in Eurasia in the Oligocene. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 543–557.  相似文献   

10.
A near-complete, partially articulated skeleton of a hummingbird was recently found in the menilite shales of the Polish Flysh Carpathians. The specimen is dated to the Early Oligocene (Rupelian, approx. 31 Myr). It shares derived characters with extant hummingbirds and plesiomorphic characters with swifts. Its long, thin beak and short and stout humerus and ulna are typical for hummingbirds, but the coracoid resembles that observed in swifts. The osteology of the specimen is generally similar to that of the hummingbird described from the Early Tertiary of Germany but because it clearly differs in some characters from the German hummingbird Eurotrochilus inexpectatus, it is described as a new species of the same genus.  相似文献   

11.
  1. Pollination syndromes refer to stereotyped floral characteristics (flower colour, shape, etc.) that are associated with a functional group of pollinators (bee, bird, etc.).
  2. The trumpet creeper Campsis radicans, endemic to the southeast and mid‐west United States, has been assigned to the hummingbird‐pollination syndrome, due mainly to its red, trumpet‐shaped flowers.
  3. Previous studies demonstrated that the ruby‐throated hummingbird Archilochus colubris is C. radicans' primary pollinator, but anecdotal data suggest various bee species may provide pollination service when hummingbirds are absent.
  4. This study characterised C. radicans nectar volume and concentration by time of day. Nectar volume was suitable for hummingbirds, but concentration was higher than typical hummingbird‐pollinated plants (~20% w/w); at ~30% w/w, it approached the concentration expected in bee‐pollinated plants (~50% w/w). We also found substantial amounts of nectar at night.
  5. Two C. radicans populations received virtually no hummingbird visits, but the number of bees were markedly higher than in the populations previously described. Interestingly, there were no night‐time visitors despite the large quantity of nocturnal nectar.
  6. Based on previously published pollen delivery per visit by various species, this study estimated that cumulative deposition by bees routinely reached pollen deposition thresholds for setting fruit in C. radicans. They are, unequivocally, the predominant pollinators in these populations, thus providing pollination service in the absence of hummingbirds.
  7. These results highlight C. radicans as a food source for native bees and add to the understanding of how floral phenotypes can facilitate pollination by disparate functional groups.
  相似文献   

12.
The lesser Egyptian jerboa Jaculus jaculus is a desert dwelling rodent that inhabits a broad Arabian–Saharan arid zone. Recently, two distant sympatric lineages were described in North‐West Africa, based on morphometric and molecular data, which may correspond to two cryptic species. In the current study, phylogenetic relationships and phylogeographical structure among those lineages and geographical populations from North Africa and the Middle East were investigated. The phylogeographical patterns and genetic diversity of the cytochrome b gene (1110 bp) were addressed on 111 jerboas from 41 localities. We found that the variation in Africa is partitioned into two divergent mitochondrial clades (10.5% divergence relating to 1.65–4.92 Mya) that corresponds to the two cryptic species: J. jaculus and J. deserti. Diversifications within those cryptic species/clades were dated to 0.23–1.13 Mya, suggesting that the Middle Pleistocene climatic change and its environmental consequences affected the evolutionary history of African jerboas. The third distant clade detected, found in the Middle East region, most likely represents a distinct evolutionary unit, independent of the two African lineages. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

13.
Thesium is a large genus of parasitic shrubs belonging to tribe Thesieae of Santalaceae. It has a principally Old World distribution, with the greatest diversity being found in southern Africa. Little is known about the relationships within Thesium or its relationships with its closest relatives. In this article, we present a first estimate of species‐level phylogenetic relationships in Thesium based on internal transcribed spacer (ITS) and trnL–trnF sequence data, and use this to explore the biogeographical history of the group. One hundred and four samples representing 72 Thesium spp. were included in a phylogenetic analysis. Plastid and combined data resolve Thesium as paraphyletic relative to Thesidium and Austroamericium with high posterior probability and bootstrap support. ITS sequence data place Thesidium as sister to a large Thesium clade, but with weak support. Ancestral range reconstruction and dating analysis suggest a southern African origin for the group, with a crown age of 39.1 ± 11.9 Mya, followed by dispersal into Europe and South America. A large clade of Cape species split in the Miocene from a clade comprising tropical species (25.5 ± 7.3 Mya) with the diversification of extant species beginning at 16.7 ± 6.3 Mya. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 435–452.  相似文献   

14.
Changes in chromosome structure and number play an important role in plant evolution. This was investigated in the Neotropical epiphytic cacti: all Lepismium spp. and some related Rhipsalis spp. Both genera have species with disjunct distributions between the paranas of south‐eastern Brazil and north‐eastern Argentina and the yungas forests of the eastern Andes. Karyotypes, fluorescent banding and fluorescence in situ hybridization (FISH) studies using rDNA probes were performed. A time‐calibrated phylogenetic tree was generated to place the karyological information and biogeographical history in an explicit evolutionary context. All species were 2n = 22 and showed symmetrical karyotypes comprising only metacentric chromosomes of similar sizes. The heterochromatin bands were always associated with chromosome satellites coinciding with the location and number of the 18S–5.8S–26S rDNA loci. The 5S rDNA loci had more heterogeneous profiles with one or two loci per haploid genome. Phylogenetic analysis suggested an ancient duplication event of the 5S rDNA loci and more recent post‐speciation translocation and deletion events. These genome restructurings are estimated to have occurred approximately 13.98 Mya in the middle Miocene, after Lepismium and Rhipsalis diverged. The ancestor of Lepismium may have had a similar karyotype to L. lumbricoides and the Rhipsalis spp. (i.e. one 5S locus on chromosome 2). Both genera hypothetically originated in the yungas (north‐eastern Argentina and southern Bolivia), but diversification of the Lepismium crown group probably originated from populations with duplicated 5S loci in the parana forests of south‐eastern Brazil (8.70 Mya in the late Miocene). Two migration events between the yungas and parana forests were suggested to explain the extant distribution of Lepismium spp. These results make Lepismium a model system for the study of the complex chromosomal evolution in plants. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 263–277.  相似文献   

15.
Convergent reproductive traits in non‐related plants may be the result of similar environmental conditions and/or specialised interactions with pollinators. Here, we documented the pollination and reproductive biology of Bionia coriacea (Fabaceae), Esterhazya splendida (Orobanchaceae) and Ananas ananassoides (Bromeliaceae) as case studies in the context of hummingbird pollination in Cerrado, the Neotropical savanna of Central South America. We combined our results with a survey of hummingbird pollination studies in the region to investigate the recently suggested association of hummingbird pollination and self‐compatibility. Plant species studied here differed in their specialisation for ornithophily, from more generalist A. ananassoides to somewhat specialist B. coriacea and E. splendida. This continuum of specialisation in floral traits also translated into floral visitor composition. Amazilia fimbriata was the most frequent pollinator for all species, and the differences in floral display and nectar energy availability among plant species affect hummingbirds' behaviour. Most of the hummingbird‐pollinated Cerrado plants (60.0%, n = 20), including those studied here, were self‐incompatible, in contrast to other biomes in the Neotropics. Association to more generalist, often territorial, hummingbirds, and resulting reduced pollen flow in open savanna areas may explain predominance of self‐incompatibility. But it is possible that mating system is more associated with the predominance of woody hummingbird plants in the Cerrado plant assemblage than to the pollination system itself.  相似文献   

16.
  • Ornithophily has evolved in parallel several times during evolution of angiosperms. Bird pollination is reported for 65 families, including Bromeliaceae. One of the most diverse bromeliad is Billbergia, which comprises species pollinated mainly by hummingbirds.
  • Based on investigations on flowering phenology, morpho‐anatomy, volume and concentration of nectar, pollinators and breeding system, this paper explores the reproductive biology and pollinator specificity of B. distachia in a mesophytic semi‐deciduous forest of southeastern Brazil.
  • The results have show that B. distachia is pollinated by a single species of hermit hummingbird, Phaethornis eurynome, which search for nectar produced by a septal nectary, where the secretory tissue is located above the placenta. The species is self‐incompatible. The combination of pollinator specificity, due to long corolla tubes that exclude visitation of short‐billed hummingbirds, complete self‐incompatibility and non‐territorial behaviour of pollinators, it is very important to reduce pollen loss and increase gene flow within population.
  • Our results indicate that studies on pollination biology and reproduction are essential to understand the evolutionary history of pollination systems of plants since, at least in Billbergia, variation in the pollinator spectrum has been recorded for different habitats among Brazilian forests. Furthermore, according to our data, foraging of Phaethornis on flowers is independent of air temperature and humidity, while the main factor influencing hummingbird visitation is daylight. Considering current knowledge on climatic parameters influencing hummingbird foraging, pollination and reproductive biology of Neotropical flora and environment of the hermit hummingbird in tropical forests, new insights on plant–pollinator interaction are provided.
  相似文献   

17.
The present study comprises an analysis of six different scoring schemes and eight different types of analytic methods aiming to investigate the evolution of a continuous character (i.e. corolla tube length) in Lithospermum L. (Boraginaceae). Corolla tube length in the genus is quite variable, ranging from 1 mm to 75 mm, and the length of the corolla tube has implications for pollination biology, such as longer corolla tubes (> 25 mm in length) being pollinated by hummingbirds or moths. In general, the various methods resolve similar ancestral character states; however, different states are reconstructed at nodes in which the descendants greatly differ in corolla tube length. Additionally, it is suggested that all of the variation of a continuous character should be included in analyses, and this may necessitate multiple analyses with different partitions of the data. The various analyses provide evidence that two maximum parsimony methods, linear parsimony and the TNT method, minimize the number of different rates of evolution. In Lithospermum, six origins of corolla tubes > 20 mm in length are resolved, and these origins occurred at two different times periods: (1) in the shadow of hummingbird diversification in North America (approximately 6–8 Mya) and (2) more recently (approximately 1–1.5 MyA). Four substantial decreases in corolla tube length also are reconstructed, and these may be associated with the origin of self‐pollination. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

18.
Unlike other migratory hummingbirds in North America, the broad‐tailed hummingbird (Selasphorus platycercus) exhibits both long‐distance migratory behaviour in the USA and sedentary behaviour in Mexico and Guatemala. We examined the evolution of migration linked to its northward expansion using a multiperspective approach. We analysed variation in morphology, mitochondrial and nuclear DNA, estimated migration rates between migratory and sedentary populations, compared divergence times with the occurrence of Quaternary climate events and constructed species distribution models to predict where migratory and sedentary populations resided during the Last Glacial Maximum (LGM) and Last Interglacial (LIG) events. Our results are consistent with a recent northward population expansion driven by migration from southern sedentary populations. Phylogeographical analyses and population genetics methods revealed that migratory populations in the USA and sedentary populations in Mexico of the platycercus subspecies form one admixed population, and that sedentary populations from southern Mexico and Guatemala (guatemalae) undertook independent evolutionary trajectories. Species distribution modelling revealed that the species is a niche tracker and that the climate conditions associated with modern obligate migrants in the USA were not present during the LIG, which provides indirect evidence for recent migratory behaviour in broad‐tailed hummingbirds on the temporal scale of glacial cycles. The finding that platycercus hummingbirds form one genetic population and that suitable habitat for migratory populations was observed in eastern Mexico during the LIG also suggests that the conservation of overwintering sites is crucial for obligate migratory populations currently facing climate change effects.  相似文献   

19.
Covariation among traits can modify the evolutionary trajectory of complex structures. This process is thought to operate at a microevolutionary scale, but its long‐term effects remain controversial because trait covariation can itself evolve. Flower morphology, and particularly floral trait (co)variation, has been envisioned as the product of pollinator‐mediated selection. Available evidence suggests that major changes in pollinator assemblages may affect the joint expression of floral traits and their phenotypic integration. We expect species within a monophyletic lineage sharing the same pollinator type will show not only similarity in trait means but also similar phenotypic variance‐covariance structures. Here, we tested this expectation using eighteen Salvia species pollinated either by bees or by hummingbirds. Our findings indicated a nonsignificant multivariate phylogenetic signal and a decoupling between means and variance‐covariance phenotypic matrices of floral traits during the evolution to hummingbird pollination. Mean trait value analyses revealed significant differences between bee‐ and hummingbird‐pollinated Salvia species although fewer differences were detected in the covariance structure between groups. Variance‐covariance matrices were much more similar among bee‐ than hummingbird‐pollinated species. This pattern is consistent with the expectation that, unlike hummingbirds, bees physically manipulate the flower, presumably exerting stronger selection pressures favouring morphological convergence among species. Overall, we conclude that the evolution of hummingbird pollination proceeded through different independent transitions. Thus, although the evolution of hummingbird pollination led to a new phenotypic optimum, the process involved the diversification of the covariance structure.  相似文献   

20.
Hummingbirds (Family Trochilidae) are key pollinators in several biodiversity hotspots, including the California Floristic Province in North America. Relatively little is known about how hummingbird diets change throughout the year, especially with regard to how migratory hummingbirds affect resident hummingbirds at stopover sites. In this study, we examine how hummingbird species, migratory status, sex, geographic region and local plant diversity influence floral resource use before, during, and after an influx of migratory hummingbirds (primarily Rufous hummingbirds, Selasphorus rufus) across California. We expected distinct floral resource use based upon species’ migratory status (resident vs. migrant), sex, sampling period, and geographic region. We employed DNA metabarcoding to detect plant DNA in hummingbird fecal samples to analyze diet diversity, composition, overlap, and interaction networks. We found significant effects of sex, sampling period, and migratory status on the alpha and beta diversity of plant taxa present in fecal samples. Analyses of Anna's hummingbirds (Calypte anna) alone revealed that female fecal samples contained higher plant species richness. In addition to hummingbird-pollinated plants, fecal samples also contained non-ornithophilous plants and species of agricultural importance. Diet overlap and plant-pollinator network analyses revealed high overlap in plant taxa used between hummingbird species, and networks were more connected, less nested, and less specialized than null models. DNA metabarcoding is minimally invasive and provides a detailed view of hummingbird diet, permitting large-scale studies. Insights into hummingbird diets are especially valuable given the logistical difficulties of directly observing floral visitation and foraging across broad temporal and spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号