首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

2.
Species interactions, and their fitness consequences, vary across the geographic range of a coevolutionary relationship. This spatial heterogeneity in reciprocal selection is predicted to generate a geographic mosaic of local adaptation, wherein coevolutionary traits are phenotypically variable from one location to the next. Under this framework, allopatric populations should lack variation in coevolutionary traits due to the absence of reciprocal selection. We examine phenotypic variation in tetrodotoxin (TTX) toxicity of the Rough‐Skinned Newt (Taricha granulosa) in regions of allopatry with its TTX‐resistant predator, the Common Garter Snake (Thamnophis sirtalis). In sympatry, geographic patterns of phenotypic exaggeration in toxicity and toxin‐resistance are closely correlated in prey and predator, implying that reciprocal selection drives phenotypic variation in coevolutionary traits. Therefore, in allopatry with TTX‐resistant predators, we expect to find uniformly low levels of newt toxicity. We characterized TTX toxicity in northwestern North America, including the Alaskan panhandle where Ta. granulosa occur in allopatry with Th. sirtalis. First, we used microsatellite markers to estimate population genetic structure and determine if any phenotypic variation in toxicity might be explained by historical divergence. We found northern populations of Ta. granulosa generally lacked population structure in a pattern consistent with northern range expansion after the Pleistocene. Next, we chose a cluster of sites in Alaska, which uniformly lacked genetic divergence, to test for phenotypic divergence in toxicity. As predicted, overall levels of newt toxicity were low; however, we also detected unexpected among‐ and within‐population variation in toxicity. Most notably, a small number of individuals contained large doses of TTX that rival means of toxic populations in sympatry with Th. sirtalis. Phenotypic variation in toxicity, despite limited neutral genetic divergence, suggests that factors other than reciprocal selection with Th. sirtalis likely contribute to geographic patterns of toxicity in Ta. granulosa.  相似文献   

3.
To evaluate the regional biogeographical patterns of West Indian native and nonnative herpetofauna, we derived and updated data on the presence/absence of all herpetofauna in this region from the recently published reviews. We divided the records into 24 taxonomic groups and classified each species as native or nonnative at each locality. For each taxonomic group and in aggregate, we then assessed the following: (1) multiple species–area relationship (SAR) models; (2) C‐ and Z‐values, typically interpreted to represent insularity or dispersal ability; and (3) the average diversity of islands, among‐island heterogeneity, γ‐diversity, and the contribution of area effect toward explaining among‐island heterogeneity using additive diversity partitioning approach. We found the following: (1) SARs were best modeled using the Cumulative Weibull and Lomolino relationships; (2) the Cumulative Weibull and Lomolino regressions displayed both convex and sigmoid curves; and (3) the Cumulative Weibull regressions were more conservative than Lomolino at displaying sigmoid curves within the range of island size studied. The Z‐value of all herpetofauna was overestimated by Darlington (Zoogeography: The geographic distribution of animals, John Wiley, New York, 1957), and Z‐values were ranked: (1) native > nonnative; (2) reptiles > amphibians; (3) snake > lizard > frog > turtle > crocodilian; and (4) increased from lower‐ to higher‐level taxonomic groups. Additive diversity partitioning showed that area had a weaker effect on explaining the among‐island heterogeneity for nonnative species than for native species. Our findings imply that the flexibility of Cumulative Weibull and Lomolino has been underappreciated in the literature. Z‐value is an average of different slopes from different scales and could be artificially overestimated due to oversampling islands of intermediate to large size. Lower extinction rate, higher colonization, and more in situ speciation could contribute to high richness of native species on large islands, enlarging area effect on explaining the between‐island heterogeneity for native species, whereas economic isolation on large islands could decrease the predicted richness, lowering the area effect for nonnative species. For most of the small islands less affected by human activities, extinction and dispersal limitation are the primary processes producing low species richness pattern, which decreases the overall average diversity with a large among‐island heterogeneity corresponding to the high value of this region as a biodiversity hotspot.  相似文献   

4.
Sexual size dimorphism (SSD) is thought to evolve due to sex differences in selection on body size, but it is largely unknown whether intraspecific variation in SSD reflects differences in sex‐specific selection among populations. We addressed this question by comparing viability selection between two island populations of the brown anole lizard (Anolis sagrei) that differ in the magnitude of male‐biased SSD. On both islands, females experienced stabilizing selection favoring intermediate size whereas males experienced directional selection favoring larger size. Thus, sex‐specific selection matched the overall pattern of male‐biased SSD, but population differences in the magnitude of SSD were not associated with local differences in selection. Rather, population differences in SSD appear to result from underlying differences in the environmental potential for a rapid growth, coupled with sex‐specific phenotypic plasticity. Males grew more slowly on the island with low SSD whereas growth of females did not differ between islands. Both sexes had substantially lower mass per unit length on the island with low SSD, suggesting that they were in a relatively poorer energetic condition. We propose that this energetic constraint disproportionately impacts growth of males due to their greater absolute energy requirements, thus driving intraspecific variation in SSD.  相似文献   

5.
The tendency of ectotherms to get larger in the cold (Bergmann clines) has potentially great implications for individual performance and food web dynamics. The mechanistic drivers of this trend are not well understood, however. One fundamental question is to which extent variation in body size is attributed to variation in cell size, which again is related to genome size. In this study, we analyzed body and genome size in four species of marine calanoid copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Paraeuchaeta norvegica, with populations from both south Norwegian fjords and the High Arctic. The Calanus species showed typical interspecific Bergmann clines, and we assessed whether they also displayed similar intraspecific variations—and if correlation between genome size and body size differed between species. There were considerable inter‐ as well as intraspecific variations in body size and genome size, with the northernmost populations having the largest values of both variables within each species. Positive intraspecific relationships suggest a functional link between body and genome size, although its adaptiveness has not been settled. Impact of additional drivers like phylogeny or specific adaptations, however, was suggested by striking divergences in body size – genome size ratios among species. Thus, C. glacialis and C. hyperboreus, had fairly similar genome size despite very different body size, while P. norvegica, of similar body size as C. hyperboreus, had the largest genome sizes ever recorded from copepods. The inter‐ and intraspecific latitudinal body size clines suggest that climate change may have major impact on body size composition of keystone species in marine planktonic food webs.  相似文献   

6.
Determining genetic variation at the DNA level within and between natural populations is important for understanding the role of natural selection on phenotypic traits, but many techniques of screening for genetic variation are either cost intensive, not sensitive enough or too labour‐ and time‐consuming. Here, we demonstrate high‐resolution melting analysis (HRMA) as a cost‐effective and powerful tool for screening variable target genes in natural populations. HRMA is based on monitoring the melting of PCR amplicons. Owing to saturating concentrations of a dye that binds at high concentrations to double‐stranded DNA, it is possible to genotype high numbers of samples rapidly and accurately. We analysed digestive trypsins of two Daphnia magna populations as an application example for HRMA. One population originated from a pond containing toxic cyanobacteria that possibly produce protease inhibitors and the other from a pond without such cyanobacteria. The hypothesis was that D. magna clones from ponds with cyanobacteria have undergone selection by these inhibitors, which has led to different trypsin alleles. We first sequenced pooled genomic PCR products of trypsins from both populations to identify variable DNA sequences of active trypsins. Second, we screened variable DNA sequences of each D. magna clone from both populations for single nucleotide polymorphisms via HRMA. The HRMA results revealed that both populations exhibited phenotypic differences in the analysed trypsins. Our results indicate that HRMA is a powerful genotyping tool for studying the variation of target genes in response to selection within and between natural Daphnia populations.  相似文献   

7.
  • Oceanic islands are dynamic settings that often promote within‐island patterns of strong population differentiation. Species with high colonisation abilities, however, are less likely to be affected by genetic barriers, but island size may impact on species genetic structure regardless of dispersal ability.
  • The aim of the present study was to identify the patterns and factors responsible for the structure of genetic diversity at the island scale in Phoenix canariensis, a palm species with high dispersal potential. To this end, we conducted extensive population sampling on the three Canary Islands where the species is more abundant and assessed patterns of genetic variation at eight microsatellite loci, considering different within‐island scales.
  • Our analyses revealed significant genetic structure on each of the three islands analysed, but the patterns and level of structure differed greatly among islands. Thus, genetic differentiation fitted an isolation‐by‐distance pattern on islands with high population densities (La Gomera and Gran Canaria), but such a pattern was not found on Tenerife due to strong isolation between colonised areas. In addition, we found a positive correlation between population geographic isolation and fine‐scale genetic structure.
  • This study highlights that island size is not necessarily a factor causing strong population differentiation on large islands, whereas high colonisation ability does not always promote genetic connectivity among neighbouring populations. The spatial distribution of populations (i.e. landscape occupancy) can thus be a more important driver of plant genetic structure than other island, or species′ life‐history attributes.
  相似文献   

8.
Geological history of oceanic islands can have a profound effect on the evolutionary history of insular flora, especially in complex islands such as Tenerife in the Canary Islands. Tenerife results from the secondary connection of three paleo‐islands by a central volcano, and other geological events that further shaped it. This geological history has been shown to influence the phylogenetic history of several taxa, including genus Micromeria (Lamiaceae). Screening 15 microsatellite markers in 289 individuals representing the eight species of Micromeria present in Tenerife, this study aims to assess the genetic diversity and structure of these species and its relation with the geological events on the island. In addition, we evaluate the extent of hybridization among species and discuss its influence on the speciation process. We found that the species restricted to the paleo‐islands present lower levels of genetic diversity but the highest levels of genetic differentiation suggesting that their ranges might have contracted over time. The two most widespread species in the island, M. hyssopifolia and M. varia, present the highest genetic diversity levels and a genetic structure that seems correlated with the geological composition of the island. Samples from M. hyssopifolia from the oldest paleo‐island, Adeje, appear as distinct while samples from M. varia segregate into two main clusters corresponding to the paleo‐islands of Anaga and Teno. Evidence of hybridization and intraspecific migration between species was found. We argue that species boundaries would be retained despite hybridization in response to the habitat's specific conditions causing postzygotic isolation and preserving morphological differentiation.  相似文献   

9.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

10.
Island systems are important models for evolutionary biology because they provide convenient, discrete biogeographic units of study. Continental islands with a history of intermittent dry land connections confound the discrete definitions of islands and have led zoologists to predict (i) little differentiation of terrestrial organisms among continental shelf islands and (ii) extinction, rather than speciation, to be the main cause of differences in community composition among islands. However, few continental island systems have been subjected to well‐sampled phylogeographic studies, leaving these biogeographic assumptions of connectivity largely untested. We analysed nine unlinked loci from shrews of the genus Crocidura from seven mountains and two lowland localities on the Sundaic continental shelf islands of Sumatra and Java. Coalescent species delimitation strongly supported all currently recognized Crocidura species from Sumatra (six species) and Java (five species), as well as one undescribed species endemic to each island. We find that nearly all species of Crocidura in the region are endemic to a single island and several of these have their closest relative(s) on the same island. Intra‐island genetic divergence among allopatric, conspecific populations is often substantial, perhaps indicating species‐level diversity remains underestimated. One recent (Pleistocene) speciation event generated two morphologically distinct, syntopic species on Java, further highlighting the prevalence of within‐island diversification. Our results suggest that both between‐ and within‐island speciation processes generated local endemism in Sundaland, supplementing the traditional view that the region's fauna is relictual and primarily governed by extinction.  相似文献   

11.
Ecogeographical patterns of morphological variation were studied in the Eurasian pygmy shrew Sorex minutus aiming to understand the species’ morphological diversity in a continental and island setting, and within the context of previous detailed phylogeographical studies. In total, 568 mandibles and 377 skulls of S. minutus from continental and island populations from Europe and Atlantic islands were examined using a geometric morphometrics approach, and the general relationships of mandible and skull size and shape with geographical and environmental variables were studied. Samples were then pooled into predefined geographical groups to evaluate the morphological differences among them using analyses of variance, aiming to contrast the morphological and genetic relationships based on morphological and genetic distances and ancestral state reconstructions, as well as assess the correlations of morphological, genetic, and geographical distances with Mantel tests. We found significant relationships of mandible size with geographical and environmental variables, fitting the converse Bergmann's rule; however, for skull size, this was less evident. Continental groups of S. minutus could not readily be differentiated from each other by shape. Most island groups of S. minutus were easily discriminated from the continental groups by being larger, indicative of an island effect. Moreover, morphological and genetic distances differed substantially and, again, island groups were distinctive morphologically. Morphological and geographical distances were significantly correlated, although this was not the case for morphological and genetic distances, indicating that morphological variation does not reflect genetic subdivision in S. minutus. Our analyses showed that environmental variables and insularity had important effects on the morphological differentiation of S. minutus.  相似文献   

12.
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.  相似文献   

13.
Heliconius are unpalatable butterflies that exhibit remarkable intra‐ and interspecific variation in wing color pattern, specifically warning coloration. Species that have converged on the same pattern are often clustered in Müllerian mimicry rings. Overall, wing color patterns are nearly identical among co‐mimics. However, fine‐scale differences exist, indicating that factors in addition to natural selection may underlie wing phenotype. Here, we investigate differences in shape and size of the forewing and the red band in the Heliconius postman mimicry ring (H. erato phyllis and the co‐mimics H. besckei, H. melpomene burchelli, and H. melpomene nanna) using a landmark‐based approach. If phenotypic evolution is driven entirely by predation pressure, we expect nonsignificant differences among co‐mimics in terms of wing shape. Also, a reinforcement of wing pattern (i.e., greater similarity) could occur when co‐mimics are in sympatry. We also examined variation in the red forewing band because this trait is critical for both mimicry and sexual communication. Morphometric results revealed significant but small differences among species, particularly in the shape of the forewing of co‐mimics. Although we did not observe greater similarity when co‐mimics were in sympatry, nearly identical patterns provided evidence of convergence for mimicry. In contrast, mimetic pairs could be distinguished based on the shape (but not the size) of the red band, suggesting an “advergence” process. In addition, sexual dimorphism in the red band shape (but not size) was found for all lineages. Thus, we infer that natural selection due to predation by birds might not be the only mechanism responsible for variation in color patterns, and sexual selection could be an important driver of wing phenotypic evolution in this mimicry ring.  相似文献   

14.
Internally feeding herbivorous insects such as leaf miners have developed the ability to manipulate the physiology of their host plants in a way to best meet their metabolic needs and compensate for variation in food nutritional composition. For instance, some leaf miners can induce green‐islands on yellow leaves in autumn, which are characterized by photosynthetically active green patches in otherwise senescing leaves. It has been shown that endosymbionts, and most likely bacteria of the genus Wolbachia, play an important role in green‐island induction in the apple leaf‐mining moth Phyllonorycter blancardella. However, it is currently not known how widespread is this moth‐Wolbachia‐plant interaction. Here, we studied the co‐occurrence between Wolbachia and the green‐island phenotype in 133 moth specimens belonging to 74 species of Lepidoptera including 60 Gracillariidae leaf miners. Using a combination of molecular phylogenies and ecological data (occurrence of green‐islands), we show that the acquisitions of the green‐island phenotype and Wolbachia infections have been associated through the evolutionary diversification of Gracillariidae. We also found intraspecific variability in both green‐island formation and Wolbachia infection, with some species being able to form green‐islands without being infected by Wolbachia. In addition, Wolbachia variants belonging to both A and B supergroups were found to be associated with green‐island phenotype suggesting several independent origins of green‐island induction. This study opens new prospects and raises new questions about the ecology and evolution of the tripartite association between Wolbachia, leaf miners, and their host plants.  相似文献   

15.
The viviparous sea snakes (Hydrophiinae) are a young radiation of at least 62 species that display spectacular morphological diversity and high levels of local sympatry. To shed light on the mechanisms underlying sea snake diversification, we investigated recent speciation and eco‐morphological differentiation in a clade of four nominal species with overlapping ranges in Southeast Asia and Australia. Analyses of morphology and stomach contents identified the presence of two distinct ecomorphs: a ‘macrocephalic’ ecomorph that reaches >2 m in length, has a large head and feeds on crevice‐dwelling eels and gobies; and a ‘microcephalic’ ecomorph that rarely exceeds 1 m in length, has a small head and narrow fore‐body and hunts snake eels in burrows. Mitochondrial sequences show a lack of reciprocal monophyly between ecomorphs and among putative species. However, individual assignment based on newly developed microsatellites separated co‐distributed specimens into four significantly differentiated clusters corresponding to morphological species designations, indicating limited recent gene flow and progress towards speciation. A coalescent species tree (based on mitochondrial and nuclear sequences) and isolation‐migration model (mitochondrial and microsatellite markers) suggest between one and three transitions between ecomorphs within the last approximately 1.2 million to approximately 840 000 years. In particular, the macrocephalic ‘eastern’ population of Hydrophis cyanocinctus and microcephalic H. melanocephalus appear to have diverged very recently and rapidly, resulting in major phenotypic differences and restriction of gene flow in sympatry. These results highlight the viviparous sea snakes as a promising system for speciation studies in the marine environment.  相似文献   

16.
Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long‐term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome‐wide ROH coverage (SROH) within the range of 237.4–284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4–180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.  相似文献   

17.
Little is known about the natural history, biology, and population genetic structure of the Hardhead Silverside, Atherinomorus stipes, a small schooling fish found around islands throughout the Caribbean. Our field observations of A. stipes in the cays of Belize and the Florida Keys found that populations tend to be in close association with the shoreline in mangrove habitats. Due to this potential island‐based population structuring, A. stipes represents an ideal system to examine questions about gene flow and isolation by distance at different geographic scales. For this study, the mitochondrial gene nd2 was amplified from 394 individuals collected from seven different Belizean Cays (N = 175) and eight different Floridian Keys (N = 219). Results show surprisingly high haplotype diversity both within and between island‐groups, as well as a high prevalence of unique haplotypes within each island population. The results are consistent with models that require gene flow among populations as well as in situ evolution of rare haplotypes. There was no evidence for an isolation by distance model. The nd2 gene tree consists of two well‐supported monophyletic groups: a Belizean‐type clade and a Floridian‐type clade, indicating potential species‐level differentiation.  相似文献   

18.
19.
1. We used a zooplankton metacommunity to ask how dispersal, genetic drift and selection act to determine the local and regional distributions of trait variation. Since the formation of the lakes 80 years ago, cladoceran species have sorted into local assemblages that cluster by lake depth. Given this species sorting, we ask whether intraspecific variation in an ecologically important phenotypic trait – body size – has sorted as well. 2. We quantified changes in body size through time by measuring ephippia from D. pulicaria, D. dentifera and D. ambigua recovered from sediment cores from two lakes. We then estimated mean body size of contemporary populations of two competing species, Daphnia pulicaria and D. dentifera, in a laboratory common garden experiment. Finally, we used microsatellite loci to characterise genetic diversity and gene flow among local sites in the metacommunity. 3. Body size was variable both within and among years for the three species of Daphnia examined using sediment cores. For two lakes where we examined body size distributions through time, we observed a significant shift in body size of the first species to arrive after colonisation by other Daphnia species, which suggests selection has occurred historically. 4. Despite heritable variation in body size in the laboratory, evidence for trait sorting was only found for D. pulicaria, which was larger in deeper lakes. Mean body size varied among lakes, but did not sort relative to depth for D. dentifera. 5. Microsatellite data indicated that neutral genetic diversity was low in the region; only 27% of the individuals assayed were unique multi‐locus genotypes. We also found significant patterns of isolation by distance for both species. However, population structure was stronger in D. dentifera than in D. pulicaria. Hence, we conclude that a limited number of colonists have successfully invaded this metacommunity, and those genotypes arriving in this new region have experienced significant dispersal limitation among local sites. 6. Overall, while dispersal and selection have clearly led to the development of predictable community assemblages related to depth in this metacommunity, the distribution of phenotypic traits within species can differ substantially even between two trophically similar species. Our results highlight the complex roles of colonisation history, dispersal, selection and stochasticity in determining inter‐ and intra‐specific patterns in metacommunities.  相似文献   

20.
Body size is an ecologically important trait shown to be genetically variable both within and among different animal populations as revealed by quantitative genetic studies. However, few studies have looked into underlying genetic architecture of body size variability in the wild using genetic mapping methods. With the aid of quantitative trait loci (QTL) analyses based on 226 microsatellite markers, we mapped body size and growth rate traits in the nine‐spined stickleback (Pungitius pungitius) using an F2‐intercross (n = 283 offspring) between size‐divergent populations. In total, 17 QTL locations were detected. The proportion of phenotypic variation explained by individual body size‐related QTL ranged from 3% to 12% and those related to growth parameters and increments from 3% to 10%. Several of the detected QTL affected either early or late growth. These results provide a solid starting point for more in depth investigations of structure and function of genomic regions involved in determination of body size in this popular model of ecological and evolutionary research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号