首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ideal free distribution (IFD) predicts that optimal foragers will select foraging patches to maximize food rewards and that groups of foragers should thus be distributed between food patches in proportion to the availability of food in those patches. Because many of the underlying mechanisms of foraging are temperature dependent in ectotherms, the distribution of ectothermic foragers between food patches may similarly depend on temperature because the difference in fitness rewards between these patches may change with temperature. We tested the hypothesis that the distribution of Common Gartersnakes (Thamnophis sirtalis) between food patches can be explained by an IFD, but that conformance to an IFD weakens as temperature departs from the optimal temperature because fitness rewards, interference competition and the number of individuals foraging are highest at the optimal temperature. First, we determined the optimal temperature for foraging. Second, we examined group foraging at three temperatures and three density treatments. Search time was optimized at 27°C, handling time at 29°C and digestion time at 32°C. Gartersnakes did not match an IFD at any temperature, but their distribution did change with temperature: snakes at 20°C and at 30°C selected both food patches equally, while snakes at 25°C selected the low food patch more at low density and the high food patch more at high density. Food consumption and competition increased with temperature, and handling time decreased with temperature. Temperature therefore had a strong impact on foraging, but did not affect the IFD. Future work should examine temperature‐dependent foraging in ectotherms that are known to match an IFD.  相似文献   

2.
Many garter snakes, Thamnophis melanogaster, at a desert pond first started foraging for tadpoles when mean water surface temperature was about 20 °C (at 0945–1015 h), and the number of snakes tripled when water temperature reached about 24 °C (at 1100–1130 h). In two years, snakes foraged in April and May, but not in March when water never reached 23 °C and only exceeded 20 °C for a few hours after the usual foraging hours. Snakes in the laboratory dedicated increasing amounts of time to underwater foraging as air and water temperatures increased from 9 °C to 29 °C, and their rate of attacks on fish increased steeply and progressively above an apparent threshold lying between roughly 19 °C and 24 °C, up to at least 29 °C. Temperature may limit T. melanogaster's foraging at the pond to the hours after roughly 0900 h and to the period after roughly March, despite evidence that prey abundance is maximal in March.  相似文献   

3.
The rate at which organisms acquire resources is a critical trait and foraging mode can vary from sit‐and‐wait tactics to being highly mobile and active. Snakes provide a robust opportunity to examine the physiological correlates of contrasted foraging strategies. In this context, haematocrit (Hct), a proxy of blood oxygen carrying capacity, should be a reliable indicator of aerobic activity levels. We used phylogenetically informed models to examine the relationship between foraging mode and Hct in 80 snake species. After accounting for clade and habitat effects, we found a significant relationship of Hct with foraging mode; Hct is lower in snakes that ambush prey compared to active foragers across habitats. Species using both foraging tactics had marginally lower Hct than active foragers. Ambush foraging tactics are widespread in snakes, notably among low‐energy specialists that usually display low feeding frequency, as well as limited activity and daily movements. Because Hct influences blood viscosity, low levels may thus be advantageous by reducing maintenance and locomotory costs. Further studies are required to better understand the implication of foraging mode on blood characteristics and other aspects of snake physiology. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 636–645.  相似文献   

4.
Studies on fish behavioural and neurophysiological responses to water temperature change may contribute to an improved understanding of the ecological consequences of global warming. We investigated behavioural and neurochemical responses to water temperature in European sea bass (Dicentrarchus labrax) acclimated to three temperatures (18, 22 and 28°C). After 21 d of acclimation, three groups of 25 fish each were exposed to four behavioural challenges (foraging, olfactory, aversive and mirror tests). The expression of choline acetyltransferase (ChAT) was then analysed by Western blotting in CNS homogenates (from a subset of the same fish) as a marker for cholinergic system activity. In both foraging and olfactory tests, fish acclimated to 28°C exhibited significantly higher arousal responses than fish acclimated to lower temperatures. All specimens showed fright behaviour in the aversive test, but the latency of the escape response was significantly less in the fish at 28°C. Finally, the highest mirror responsiveness was exhibited by the fish acclimated to 22°C. As in the case of cholinergic neurotransmission, significantly higher ChAT levels were detected in the telencephalon, diencephalon, cerebellum and spinal cord of fish acclimated to 22 or 28°C in comparison with those maintained at 18°C. Lower ChAT levels were detected in the mesencephalon (optic tectum) at 22 and 28°C than at 18°C. These data indicate that neuronal functions are affected by water temperature. Increases or decreases in ChAT expression can be related to the functional modulation of brain and spinal cord centres involved in behavioural responses to temperature change. Overall, the results of this study suggest that the environmental temperature level influences behaviour and CNS neurochemistry in the European sea bass.  相似文献   

5.
Among amphibians, the ability to compensate for the effects of temperature on the locomotor system by thermal acclimation has only been reported in larvae of a single species of anuran. All other analyses have examined predominantly terrestrial adult life stages of amphibians and found no evidence of thermal acclimatory capacity. We examined the ability of both tadpoles and adults of the fully aquatic amphibian Xenopus laevis to acclimate their locomotor system to different temperatures. Tadpoles were acclimated to either 12 °C or 30 °C for 4 weeks and their burst swimming performance was assessed at four temperatures between 5 °C and 30 °C. Adult X. laevis were acclimated to either 10 °C or 25 °C for 6 weeks and their burst swimming performance and isolated muscle performance was determined at six temperatures between 5 °C and 30 °C. Maximum swimming performance of cold-acclimated X. laevis tadpoles was greater at cool temperatures and lower at the highest temperature in comparison with the warm-acclimated animals. At the test temperature of 12 °C, maximum swimming velocity of tadpoles acclimated to 12 °C was 38% higher than the 30 °C-acclimation group, while at 30 °C, maximum swimming velocity of the 30 °C-acclimation group was 41% faster than the 12 °C-acclimation group. Maximum swimming performance of adult X. laevis acclimated to 10 °C was also higher at the lower temperatures than the 25 °C acclimated animals, but there was no difference between the treatment groups at higher temperatures. When tested at 10 °C, maximum swimming velocity of the 10 °C-acclimation group was 67% faster than the 25 °C group. Isolated gastrocnemius muscle fibres from adult X. laevis acclimated to 10 °C produced higher relative tetanic tensions and decreased relaxation times at 10 °C in comparison with animals acclimated to 25 °C. This is only the second species of amphibian, and the first adult life stage, reported to have the capacity to thermally acclimate locomotor performance. Accepted: 28 October 1999  相似文献   

6.
Tropical coral reef teleosts are exclusively ectotherms and their capacity for physical and physiological performance is therefore directly influenced by ambient temperature. This study examined the effect of increased water temperature to 3 °C above ambient on the swimming and metabolic performance of 10 species of damselfishes (Pomacentridae) representing evolutionary lineages from two subfamilies and four genera. Five distinct performance measures were tested: (a) maximum swimming speed (Ucrit), (b) gait‐transition speed (the speed at which they change from strictly pectoral to pectoral‐and‐caudal swimming, Up?c), (c) maximum aerobic metabolic rate (MO2?MAX), (d) resting metabolic rate (MO2?REST), and (e) aerobic scope (ratio of MO2?MAX to MO2?REST, ASC). Relative to the control (29 °C), increased temperature (32 °C) had a significant negative effect across all performance measures examined, with the magnitude of the effect varying greatly among closely related species and genera. Specifically, five species spanning three genera (Dascyllus, Neopomacentrus and Pomacentrus) showed severe reductions in swimming performance with Ucrit reduced in these species by 21.3–27.9% and Up?c by 32.6–51.3%. Furthermore, five species spanning all four genera showed significant reductions in metabolic performance with aerobic scope reduced by 24.3–64.9%. Comparisons of remaining performance capacities with field conditions indicate that 32 °C water temperatures will leave multiple species with less swimming capacity than required to overcome the water flows commonly found in their respective coral reef habitats. Consequently, unless adaptation is possible, significant loss of species may occur if ocean warming of ≥3 °C arises.  相似文献   

7.
Exercise promotes transitory alterations in cytokine secretion, and these changes are affected by exercise duration and intensity. Considering that exercise responses also are affected by environmental factors, the goal of the present study was to investigate the effect of water temperature on the cytokine response to maximum swimming. Swiss mice performed a maximum progressive swimming exercise at 31 or 38 °C, and plasma cytokine levels were evaluated immediately or 1, 6 or 24 h after exercise. The cytokine profile after swimming at 31 °C was characterized by increased interleukin (IL)‐6 and monocyte chemotactic protein‐1 (MCP‐1) levels, which peaked 1 h after exercise, suggesting an adequate inflammatory milieu to induce muscle regeneration. Transitory reductions in IL‐10 and IL‐12 levels also were observed after swimming at 31 °C. The cytokine response to swimming was modified when the water temperature was increased to 38 °C. Although exercise at 38 °C also led to IL‐6 secretion, the peak in IL‐6 production occurred 6 h after exercise, and IL‐6 levels were significantly lower than those observed after maximum swimming at 31 °C (p = 0·030). Furthermore, MCP‐1 levels were lower and tumour necrosis factor‐α levels were higher immediately after swimming at 38 °C, suggesting a dysregulated pro‐inflammatory milieu. These alterations in the cytokine profile can be attributed in part to reduced exercise total work because exhaustion occurred sooner in mice swimming at 38 °C than in those swimming at 31 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract. Eretmocerus eremicus is a parasitoid wasp that is not native to Britain. It is a biological control agent of glasshouse whitefly and has recently been released under licence in Britain for the first time. This study assessed the effect of low temperature on the outdoor establishment potential of E. eremicus in Britain. The developmental threshold calculated by three linear methods was between 6.1° and 11.6 °C, with a degree‐day requirement per generation between 256.3 and 366.8° day?1. The supercooling points of non‐acclimated and acclimated larvae were similar (approximately ?25 °C). Non‐acclimated and acclimated larvae were subject to considerable pre‐freeze mortality, with lethal temperature (LTemp50) values of ?16.3 and ?21.3 °C, respectively. Lethal time experiments indicated a similar lack of cold tolerance with 50% mortality of both non‐acclimated and acclimated larvae after 7 days at ?5 °C, 10 days at 0 °C and 13 days at 5 °C. Field trials showed that neither non‐acclimated nor acclimated larvae survived longer than 1 month when exposed to naturally fluctuating winter temperatures. These results suggest that releasing E. eremicus into British greenhouses would pose minimal risk because typical British winter temperatures would be an effective barrier against establishment in the wild.  相似文献   

9.
Yellow‐lipped sea kraits (Laticauda colubrina) are amphibious in their habits. We measured their locomotor speeds in water and on land to investigate two topics: (1) to what degree have adaptations to increase swimming speed (paddle‐like tail etc.) reduced terrestrial locomotor ability in sea kraits?; and (2) do a sea krait’s sex and body size influence its locomotor ability in these two habitats, as might be expected from the fact that different age and sex classes of sea kraits use the marine and terrestrial environments in different ways? To estimate ancestral states for locomotor performance, we measured speeds of three species of Australian terrestrial elapids that spend part of their time foraging in water. The evolutionary modifications of Laticauda for marine life have enhanced their swimming speeds by about 60%, but decreased their terrestrial locomotor speed by about 80%. Larger snakes moved faster than smaller individuals in absolute terms but were slower in terms of body lengths travelled per second, especially on land. Male sea kraits were faster than females (independent of the body‐size effect), especially on land. Prey items in the gut reduced locomotor speeds both on land and in water. Proteroglyphous snakes may offer exceptional opportunities to study phylogenetic shifts in locomotor ability, because (1) they display multiple independent evolutionary shifts from terrestrial to aquatic habits, and (2) one proteroglyph lineage (the laticaudids) displays considerable intraspecific and interspecific diversity in terms of the degree to which they use terrestrial vs. aquatic habitats.  相似文献   

10.
We investigated morphological adaptations to aquatic life within animals that exhibit a structurally simple, elongate body form, i.e., snakes. This linear body plan should impose different biomechanical constraints than the classical streamlined body shape associated with propulsion by fins, feet, or wings. Our measurements of general body shape of terrestrial, amphibious, and marine snakes (all from the same phylogenetic lineage, the Elapidae) show that seasnakes display specialized morphological attributes for life in water. Most notably, the cross‐sectional body shape is circular in terrestrial snakes but dorso‐ventrally elongated in seasnakes (due to a prominent ventral keel); amphibious species (sea kraits) exhibit an intermediate shape. The tail of amphibious and marine species (a major propulsive structure during swimming) is higher and thinner than in terrestrial snakes (i.e., paddle‐shaped) but shorter relative to body length. The evolution of a laterally compressed shape has been achieved by an increase in body height rather than a decrease in body width, possibly reflecting selection for more effective propulsive thrust, and for an ability to maintain hydrodynamic efficiency despite the minor bodily distension inevitably caused by prey items and developing offspring. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc  相似文献   

11.
Populations of widespread species often differ in phenotypic traits, although rarely in such a dramatic fashion as revealed by research on turtle‐headed seasnakes (Emydocephalus annulatus). These snakes are highly philopatric, with mark–recapture studies showing that the interchange of individuals rarely occurs even between two adjacent bays (separated by < 1.2 km) in Noumea, New Caledonia. Data on > 500 field‐captured snakes from these two bays reveal significant differences between these two locations in snake morphology (mean body length, relative tail length, head shape), colour, ecology (body condition, growth rate, incidence of algal fouling), behaviour (antipredator tactics), and locomotor performance. For some traits, the disparity was very marked (e.g. mean swimming speeds differed by > 30%). The causal bases for these phenotypic divergences may involve founder effects, local adaptation, and phenotypic plasticity. The spatial divergence in phenotypic traits offers a cautionary tale both for researchers (sampling of only a few populations may fail to provide a valid overview of the morphology, performance, and behaviour of a species) and managers (loss of local populations may eliminate distinctive genetic variation). © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

12.
Marine organisms living at low temperatures tend to have larger genomes and larger cells which suggest that these traits can be beneficial in colder environments. In fish, triploidy (three complete sets of chromosomes) can be induced experimentally following fertilization, which provides a model system to investigate the hypothesis that larger cells and genomes offers a physiological advantage at low temperatures. We tested this hypothesis by measuring metabolic rates and swimming performance of diploid and triploid Atlantic salmon (Salmo salar) post smolts acclimated to 3 or 10.5 °C. At 10.5 °C, triploids had significantly lower maximum metabolic rates which resulted in a lower aerobic scope compared to diploids. In addition, triploids initiated ram ventilation at lower swimming speeds, providing further evidence of a reduced capacity to meet oxygen demands during strenuous activity at 10.5 °C. However, at 3 °C, metabolic rates and critical swimming speeds were similar between both ploidies, and as expected substantially lower than at 10.5 °C. Therefore, triploidy in colder environments did not provide any advantage over diploidy in terms of metabolic rate traits or swimming performance in Atlantic salmon. We therefore conclude that traits, other than aerobic scope and swimming performance, contribute to the trend for increased cell and genome size in marine ectotherms living in cold environments.  相似文献   

13.
The effect of the acclimation temperature on the temperature tolerance ofPorphyra leucosticta, and on the temperature requirements for growth and survival ofEnteromorpha linza was determined under laboratory conditions. Thalli ofP. leucosticta (blade or Conchocelis phases), acclimated to twenty-five degrees, survived up to 30°C, i.e. 2°C more than those acclimated to 15°C which survived up to 28°C. Lower temperature tolerance of bothPorphyra phases that were acclimated to 15°C was −1°C after an 8-week exposure time at the experimental temperatures. The upper temperature tolerance ofE. linza also increased by 2°C, i.e. from 31 to 33°C, when it was acclimated to 30°C instead of 15°C. The lower temperature tolerance increased from 1 to −1°C, when it was acclimated to 5°C instead of 15°C.E. linza thalli acclimated for 4 weeks to 5 or 10°C reached their maximum growth at 15°C, i.e. at a 5°C lower temperature than those acclimated to 15 or 30°C. These thalli achieved higher growth rates in percent of maximal growth at low temperatures than those acclimated to 15 or 30°C. Thalli acclimated for 1 week to 5°C reached their maximum growth rate at 20°C and achieved growth rates at low temperatures similar to those recorded for thalli acclimated to 15°C. Thalli ofE. linza acclimated for 4 weeks to 5°C lost this acclimation after being post-cultivated for the same period at 15°C. That was not the case with thalli acclimated for 8 weeks to 5°C and post-acclimated for 4 weeks to 15°C. These thalli displayed similar growth patterns at 10–25°C, while a decline of growth rate was observed at 5 or 30°C. The significance of the acclimation potential ofE. linza with regard to its seasonality in the Gulf of Thessaloniki, and its distribution in the N Atlantic, is also discussed.  相似文献   

14.
Diplonychus indicus is a highly versatile predator that forages both actively and from ambush. However, no correlations between predatory mode changes and predatory performance have yet been evidenced. The hypotheses that time spent foraging actively was proportional to time spent locomotory active and that time spent ambushing was proportional to time spent quiescent were tested during animal development. Locomotory activity increases during development due to increases in both frequency and duration of swimming bouts. The frequency of position changes increases as well. Eggbearing males were less active than other adults. However, the proportion of active foraging did not vary significantly with developmental stage and no correlations between activity level and predatory mode were found. Changes in predatory tactics inDiplonychus indicus differ from those reported in other predators as they are not related to any of the usual biotic or abiotic factors.  相似文献   

15.
Tongue-flicking rate has often been used as a dependent variable or a component of a dependent variable taken as a measure of responsiveness to chemical stimuli by lizards and snakes. Because temperature has been controlled in most studies, effects of temperature have been largely overlooked. In this study, a constant stimulus, the adult cloacal odor of a conspecific female, was presented to adult scincid lizards (Eumeces laticeps) and temperature was from 15 ° to 35 °C. Tongue-flicking rates by adult Eumeces laticeps in response to cloacal odors of conspecific females were strongly thermally dependent in 20 s and 60 s trial periods. The tongue-flick-temperature curve appears to be roughly quadratic over the entire 15 °-35 °C range studied, with very low rates at 15 ° and 20 °C followed by a rapid rise to maximum tongue-flicking rate at 30 ° and rapid decline to 35 °C. Presumably, similar relationships apply to other lizards and snakes with modifications related to ecological characteristics such as diel activity cycle and foraging mode, to relative position on a scale of eurythermy-stenothermy, and to taxon. Thermal response curves for other stimuli, especially prey odors, are likely to have the same basic form, but have not been determined.  相似文献   

16.
Feeding performance (handling time, capture success) in numerous animal species is well known to be influenced by a variety of ecological, functional, and physiological factors. Nonetheless, few studies have tested which factors are the strongest determinants of animal feeding performance in the wild. Using a field-based experiment, we examined the relationships among a number of functionally important variables and the predatory behaviour of free-ranging pit-vipers ( Ovophis okinavensis ) from Okinawa Island, Japan. Our main findings were: (1) strike latency was negatively related to snake body temperature and, hence, hotter snakes struck at frogs more readily than colder snakes; (2) initial bite position was correlated with ingestion direction (headfirst versus hindfirst) but ingestion direction was not correlated with ingestion duration; and (3) both snake head length and body temperature were negatively related with ingestion duration and, thus, snakes with longer heads and higher body temperatures had shorter ingestion durations. In O. okinavensis , head size and body temperature are therefore likely to have direct ecological consequences in terms of its feeding rate on explosively breeding frogs. More generally, however, this field-based study adds to the growing body of literature demonstrating that temperature has a pervasive influence on the feeding performance of ectotherms in general.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 53–62.  相似文献   

17.
On coral reefs in New Caledonia, the eggs of demersal‐spawning fishes are consumed by turtle‐headed seasnakes (Emydocephalus annulatus). Fish repel nest‐raiding snakes by a series of tactics. We recorded 232 cases (involving 22 fish species) of antipredator behaviour towards snakes on a reef near Noumea. Blennies and gobies focused their attacks on snakes entering their nests, whereas damselfish (Pomacentridae) attacked passing snakes, as well as nest‐raiders (reflecting territorial defence). Biting the snake was the most common form of attack, although damselfish and blennies also slapped snakes with the tail, or (blennies only) plugged the nest entrance with the parent fish's body. Gobies rarely defended the nest, although they sometimes bit or threw sand at the snake. A snake was more likely to flee if it was attacked before it began feeding rather than after it found the eggs (82% versus 3% repelled) and if bitten on the head rather than the body (68% versus 53%). Tail‐slaps were not effective, although plugging the burrow and throwing sand often caused snakes to flee. These strong patterns reflect phylogenetic variation in fish behaviour (e.g. damselfish detect a snake approach sooner than do substrate‐dwelling blennies and gobies) coupled with intraspecific variation in snake diets. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 415–425.  相似文献   

18.
Examples of acoustic Batesian mimicry are scarce, in contrast to visual mimicry. Here we describe a potential case of acoustic mimicry of a venomous viper model by harmless viperine snakes (colubrid). Viperine snakes resemble vipers in size, shape, colour, pattern, and anti‐predatory behaviours, including head flattening, false strikes, and hissing. We sought to investigate whether hissing evolved as part of, or separately to, the viper mimic syndrome. To do this, we recorded and analysed the hissing sounds of several individual asp vipers, viperine snakes, and grass snakes (a close relative of viperine snakes that hisses but does not mimic the asp viper). Frequencies consistently ranged from 40 to 12 000 Hz across species and individuals. All vipers (100%) and most viperine snakes (84%) produced inhalation hissing sounds, in comparison to only 25% of grass snakes. Inhalation hissing sounds lasted longer in vipers than in viperine snakes. The hissing‐sound composition of grass snakes differed significantly from that of both asp vipers and viperine snakes; however, the hissing‐sound composition between viperine snakes and asp vipers was not statistically distinguishable. Whilst grass snake hissing sounds were characterized by high frequencies (5000–10 000 Hz), both vipers and viperine snake hissing sounds were dominated by low frequencies (200–400 Hz). A principal component analysis revealed no overlap between grass snakes and vipers, but important overlaps between viperine snakes and vipers, and between viperine snakes and grass snakes. The likelihood that these overlaps respectively reflect natural selection for Batesian mimicry and phylogeny constraints is discussed. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 1107–1114.  相似文献   

19.
Large‐bodied fish are critical for sustaining coral reef fisheries, but little is known about the vulnerability of these fish to global warming. This study examined the effects of elevated temperatures on the movement and activity patterns of the common coral trout Plectropomus leopardus (Serranidae), which is an important fishery species in tropical Australia and throughout the Indo West‐Pacific. Adult fish were collected from two locations on Australia's Great Barrier Reef (23°S and 14°S) and maintained at one of four temperatures (24, 27, 30, 33 °C). Following >4 weeks acclimation, the spontaneous swimming speeds and activity patterns of individuals were recorded over a period of 12 days. At 24–27 °C, spontaneous swimming speeds of common coral trout were 0.43–0.45 body lengths per second (bls?1), but dropped sharply to 0.29 bls?1 at 30 °C and 0.25 bls?1 at 33 °C. Concurrently, individuals spent 9.3–10.6% of their time resting motionless on the bottom at 24–27 °C, but this behaviour increased to 14.0% at 30 °C and 20.0% of the time at 33 °C (mean ± SE). The impact of temperature was greatest for smaller individuals (<45 cm TL), showing significant changes to swimming speeds across every temperature tested, while medium (45–55 cm TL) and large individuals (>55 cm TL) were first affected by 30 °C and 33 °C, respectively. Importantly, there was some indication that populations can adapt to elevated temperature if presented with adequate time, as the high‐latitude population decreased significantly in swimming speeds at both 30 °C and 33 °C, while the low‐latitude population only showed significant reductions at 33 °C. Given that movement and activity patterns of large mobile species are directly related to prey encounter rates, ability to capture prey and avoid predators, any reductions in activity patterns are likely to reduce overall foraging and energy intake, limit the energy available for growth and reproduction, and affect the fitness and survival of individuals and populations.  相似文献   

20.
The effect of incubation temperature on embryonic development and offspring traits has been widely reported for many species. However, knowledge remains limited about how such effects vary across populations. Here, we investigated whether incubation temperature (26, 28, and 30 °C) differentially affects the embryonic development of Asian yellow pond turtle (Mauremys mutica) eggs originating from low‐latitude (Guangzhou, 23°06′N) and high‐latitude (Haining, 30°19′N) populations in China. At 26 °C, the duration of incubation was shorter in the high‐latitude population than in the low‐latitude population. However, this pattern was reversed at 30 °C. As the incubation temperature increased, hatching success increased in the low‐latitude population but slightly decreased in the high‐latitude population. Hatchlings incubated at 30 °C were larger and righted themselves more rapidly than those incubated at 26 °C in the low‐latitude population. In contrast, hatchling traits were not influenced by incubation temperature in the high‐latitude population. Overall, 30 °C was a suitable developmental temperature for embryos from the low‐latitude population, whereas 26 and 28 °C were suitable for those from the high‐latitude population. This interpopulation difference in suitable developmental temperatures is consistent with the difference in the thermal environment of the two localities. Therefore, similarly to posthatching individuals, reptile embryos from different populations might have evolved diverse physiological strategies to benefit from the thermal environment in which they develop. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 35–43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号